

Targeting KRAS in Pancreatic Cancer: A Long But Successful Climb

Nilofer Azad, MD Associate Director of Clinical Research Co-Leader, Cancer Genetics and Epigenetics Program Sidney Kimmel Comprehensive Cancer Center

Disclosures

- Consulting: Tempus, BMS/Mirati, Revolution Medicine, Lilly/Loxo, Agenus, GSK, AstraZeneca, Incyte, Taiho
- Research grants: Compass, BMS, Pfizer, Revolution Medicine, Agenus, AstraZeneca, Agenus, Syndax, Taiho
- Ownership shares: Quest/Haystack, Cage Pharma

Metastatic Pancreatic Cancer Survival

Burris, JCO, 1997, 15(6): 2403-2413; Conroy, NEJM, 2011, 364(19): 1817-1825; Von Hoff, NEJM, 2013, 369(18): 1691-1703; Ramanathan, R., 2013, JCO; Portal, A, Br J Cancer, 2015; Weinberg, B, 2015, Oncology

Molecular profiling has made targeted therapy a reality

Collisson EA, et al, Nat Rev Gastro Hep, 2019 Bailey P, et al. Nature. 2016;531:47-52 Jones S, et al, Science. 2008;321:1801-1806

KRAS mutations are common in solid tumors, especially GI cancers

KRAS Mutations are a hallmark of PDAC

Zehir A, et al. Nat Med 2017. Salem ME, et al. JCO Precis Oncol 2022. Luo J. Semin Oncol 2021 [data analyzed using cBio Cancer Genomics Portal (http://cbioportal.org); Cerami E, et al. Cancer Discov. 2012; Gao J, et al. Sci Signal. 2013]. Hosein AN, et al. Nat Cancer 2022

KRAS was considered undruggable for decades

- KRAS gene and mutations identified in 1982-3, a GTPase that cycled between active state (GTP-bound) vs inactive state (GDP-bound)
- KRAS mutations resulted in a KRAS protein that was constitutively active with impaired GTPase activity
- 40 years of targeting KRAS downstream and parallel signaling was ineffective

Jancik et al J Biomed Biotech 2010; Huang et al Sig Transd Targeted Ther 2021

https://bpsbioscience.com/research-areas/ras

We are in a new era of direct KRAS targeting now

- In 2013, the Shokat lab found that we could target the cysteine residues of the KRAS G12C novel binding pocket in the inactive form
- ~ Prevalence of KRAS G12C mutations
 - NSCLC 9%
 - CRC 3%
 - Appendiceal 4%
 - Pancreatic 1%

https://bpsbioscience.com/research-areas/ras

Jancik et al J Biomed Biotech 2010; Huang et al Sig Transd Targeted Ther 2021, Salem et al JCO PM 2022

G12Ci – first to the party: adagrasib in active in patients with KRAS G12C mutations

- Confirmed objective responses were observed in 20/57 patients (35%)
- Disease control was observed in 49/57 patients (86%)

ORR, n (%)

20 (35)

7 (33)

5 (42)

2 (17)

0 (0)

1 (50)

1 (33)

4 (57)

2 (50)

2 (67)

2 (40)

1 (25)

1 (100)

Tumor Type

PDAC (n=21)

Other GI (n=12)

Appendiceal (n=7)

Small bowel (n=2)

Ovarian (n=4)

Other tumors (n=5)

Breast (n=1)

Endometrial (n=3)

GEJ/esophageal (n=3)

Gynecological tumors (n=7)

Unknown primary (n=4)

BTC (n=12)

All patients (n=57)

<u>G12Ci – first to the party: sotarasib in active in patients with KRAS</u> <u>G12C mutations</u>

<u>Combination strategy: RTKi + mKRASi being</u> <u>explored clinically</u>

AGR American Association for Cancer Research

Sotorasib activity magnified by addition of an EGFR inhibitor

Fakih et al. NEJM 2023

Adagrasib activity magnified by addition of an EGFR inhibitor

- ORR 19% vs 46%
- PFS 5.6 vs 6.9.
- DOR 4.3 vs 7.6m

Yaeger et al. NEJM 2023

Guidelines now support G12Ci treatment in CRC

on for Cancer Research

NCCN compendia allow for G12Ci therapy in multiple entities

FINDING CURES TOGETHER

Combination strategy: does vertical inhibition of signaling cascade improve outcomes?

The party becomes a rager: multiple agents for KRAS inhibition

Pioneering Tri-Complex RAS(ON) Inhibitors Designed to Deliver Robust and Durable Antitumor Activity

RMC-6236

- Oral RAS(ON) multi-selective inhibitor
- Clinically validated across diverse oncogenic RAS variants, including G12D

RMC-9805

- Oral RAS(ON) G12D-selective covalent inhibitor
- Clinically validated against oncogenic RAS G12D

RMC-6236 Current Data

ORR and DCR in PDAC Patients Treated with RMC-6236 160-300 mg

Data cutoff: July 23, 2024. Among patients with an objective response (confirmed or unconfirmed), 50% of initial response occurred after 2 months of RMC-6236 treatment.

Compelling PFS in PDAC Patients Treated with RMC-6236 160-300 mg as 2L Therapy

	KRAS G12Xª (N = 42)	RAS Mutant ^b (N = 57)
Median PFS, Months (95% CI)	8.5 (5.3-11.7)	7.6 (5.9-11.1)

Compelling OS in PDAC Patients Treated with RMC-6236 160-300 mg as 2L Therapy

Treatment-Related Adverse Events: PDAC (160-300 mg)

	N = 1	27
Maximum Severity of Treatment-Related AEs (TRAEs)	Any Grade	Grade ≥3
Any TRAE	122 (96%)	28 (22%)
TRAEs occurring in ≥10% of patients, n (%)		
Rash ⁽¹⁾	111 (87%)	8 (6%)
Diarrhea	58 (46%)	2 (2%)
Nausea	54 (43%)	0 (0%)
Stomatitis/mucositis	48 (38%)	3 (2%)
Vomiting	36 (28%)	0 (0%)
Fatigue	21 (17%)	1 (1%)
Paronychia	13 (10%)	0 (0%)
Other select TRAEs, n (%)		
ALT elevation	6 (5%)	0 (0%)
AST elevation	8 (6%)	0 (0%)
Electrocardiogram QT prolonged	1 (1%)	1 (1%)
Neutropenia/neutrophil count decreased	6 (5%)	1 (1%)
Thrombocytopenia/platelet count decreased	14 (11%)	3 (2%)

(1) Includes preferred terms of dermatitis acneiform, eczema, erythema, rash, rash erythematous, rash maculopapular, rash pruritic and rash pustular; multiple types of rash

may have occurred in the same patient.

ALT alanine transaminase: AST aspartate transferase.

GR American Association for Cancer Research FINDING CURES TOGETHER

Trial Design for RASolute 302: 2L Metastatic PDAC

RMC-9805 Current Data

RMC-9805-001 Phase 1 Study Design (RMC-9805 Monotherapy)

Anti-tumor activity

Encouraging Initial Antitumor Activity in PDAC Patients Treated with RMC-9805

Meaningfully different tolerability between two agents

Maximum accurity of tractment valated AEs (TDAEs)	RMC-6236 160-300 mg QD (N =127)				
maximum seventy of treatment-related AES (TRAES)	Any Grade	Grade ≥ 3			
Any TRAE	124 (98)	37 (29)			
TRAEs occurring in > 10% of patients, n (%)					
Rash ^a	115 (91)	10 (8)			
Diarrhea	61 (48)	3 (2)			
Nausea ^b	54 (43)	0 (0)			
Vomiting ^b	39 (31)	0 (0)			
Stomatitis	39 (31)	4 (3)			
Fatigue	25 (20)	1 (1)			
Paronychia	17 (13)	0 (0)			
Mucosal inflammation	16 (13)	1 (1)			
Thrombocytopenia/platelet count decreased	14 (11)	3 (2)			
Decreased appetite	14 (11)	1 (1)			
Peripheral edema	13 (10)	0 (0)			
Other select TRAEs, n (%)	17758-5766				
Anemia	11 (9)	7 (6)			
ALT elevation	10 (8)	3 (2)			
AST elevation	9 (7)	2 (2)			
Neutropenia/neutrophil count decreased	7 (6)	2 (2)			

	RMC-6236 160-300 mg OD (N = 127)
TRAEs leading to dose modification, n (%)	45 (35)
Dose interruption	43 (34)
Dose reduction	24 (19)
Dose discontinuation	O (O)
Specific TRAEs leading to dose reduction in >10% patients, n (%)	
Rash*	14 (11)
Mean dose intensity	92%

Patients Treated with RMC-9805 1200 mg Dai	ly (1200 mg C	D, N=60 or 60	00 mg BID, N	=39)	
Maximum Severity of Treatment-Related AEs	Grade 1 Grade 2		Grade 3	Any Grade	
TRAEs occurring in ≥10% of patients, n (%)					
Nausea	23 (23%)	4 (4%)	0	27 (27%)	
Diarrhea	16 (16%)	4 (4%)	0	20 (20%)	
Vomiting	13 (13%)	2 (2%)	0	15 (15%)	
Rash ^a	10 (10%)	0	0	10 (10%)	
Other select TRAEs, n(%)					
ALT elevation	5 (5%)	0	1 (1%)	6 (6%)	
AST elevation	3 (3%)	1 (1%)	0	4 (4%)	
Stomatitis	0	0	0	0	
TRAEs leading to dose reduction, n (%)	4 (4%)	0	0	4 (4%)	
TRAEs leading to treatment discontinuation, n (%)	0	0	0	0	

· No treatment-related Grade 4 or 5 AEs or SAEs have been reported

Activity seen in KRAS G12D degrader

Responses to ASP3082 300–600mg in Patients with PDAC

FINDING CURES TOGETHER

Combination strategy: is combining with chemotherapy additive or synergistic?

RAS inhibitors may preferentially target a chemo-resistant (basal) phenotype in PDAC

Basal type pancreatic cancer is more chemotherapy resistant

... but responds better to KRAS inhibition.

Breakthrough Cancer Foundation: MDACC, DFCI, MSK

Combination chemo+KRASi therapy could target both subtypes of pancreatic cancer

Mouse model of pancreatic cancer treated with

- GnP (chemo)
- **MRTX1133**
- MRTX1133/GnP

Further detail:

AACR Tuesday session: Advances in Organ Site Research - Unwrapping heterogeneity in pancreatic cancer Mechanisms of resistance of KRAS inhibition in pancreatic cancer Andy Aguirre

Much more coming in this space

Clinical Development Pipeline

APPROACH	FOCUS	EARLY CLINICAL DEVELOPMENT ⁽¹⁾	REGISTRATIONAL TRIAL
RMC-6236 (MULTI:	G12X, G13X, Q61X)		
	PDAC		
Monotherapy	NSCLC		
	Other solid tumors		
	+ Chemotherapy, PDAC and CRC		
Combination	+ Pembrolizumab, NSCLC		
	+ anti-EGFR, CRC		
RMC-6291 (G12C)			
Monotherapy	Solid tumors		
Combination	+ Pembrolizumab, NSCLC		
Combination	+ RMC-6236, solid tumors		
RMC-9805 (G12D)			
Monotherapy	Solid tumors		
Combination	+ RMC-6236, solid tumors		

Phase I this year

BMS/Mirati – G12D Incyte – G12D Beigene – multi-Ras and G12D Jazz – multi-RAS Pfizer – multi-RAS Lilly/Loxo -multi-Ras and G12D BI – multi-RAS

(1) Long bar indicates that registrational intent has been announced.

FINDING CURES TOGETHER

Combination strategy: does vertical inhibition of signaling cascade improve outcomes?

Combination strategy: Vertical inhibition with SOS1/SHP2+KRASi

Linehan et al Front Med 2024

KRAS G12Ci+SHP2i is active preclinically in resistant CRC models

RVMD preclinical research Nichols. RMC-6291: Biological Features of Targeting KRAS^{G12C}(ON) and Potential Application to Overcoming Drug Resistance in RAS-Addicted Tumors. The Third RAS Initiative Symposium. May 24 – 26, 2021.

All treatments well tolerated Kindly provided by Mallika Singh

FINDING CURES TOGETHER

Combination strategy: how do we deal with suboptimal durability/resistance?

Many mechanisms of KRASi resistance are emerging

Figure modified from Blaquier et al., Front. Oncol.

<u>Multiple mechanisms of resistance</u> emerge on therapy with KRASi

Yaeger ... Misale. Cancer Discovery 2023

<u>Multi RAS inhibitors have potency against</u> <u>emerging KRAS mutations</u>

KRAS ^{G12}	G12A	G12C	G12D	G12E	G12F	G12H	G12I	G12K	G12L	G12M	G12N	G12P	G12Q	G12R	G12S	G12T	G12V	G12W	G12Y
Clinical resistance																			
RMC-6236	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

KRAS ^{G13}	G13	G13D	NRAS ^{Q61}	Q61	Q61K
Clinical resistance			Clinical resistance		
RMC-6236	+	+	RMC-6236	+	+

Active against mutation
Resistance mutation reported in clinic

Can combination dual KRAS inhibition overcome resistance?

Example: where would we expect to see compensatory upregulation?

Eser *et al.* British Journal of Cancer (2014) 111, 817-822 doi:10.1038/bjc.2014.215

KRASi results in compensatory, therapeutically targetable AKT/mTOR activation

Brown et al. Cell Reports Medicine 2020

FINDING CURES TOGETHER

Combination strategy: KRAS inhibitors as immunomodulators

KRAS mutations have known immunosuppressive effects

- Including:
 - Decreased MHC I expression
 - Recruitment of MDSCs and Tregs to TME
 - Upregulation of PD-L1
 - Decreased tumor-specific T cell function

KRAS G12Di has immunomodulatory impact on tumor and immune cell populations

<u>TUMOR CELLS</u> Decreased viability and increased MHC-1 expression on surviving cells

Kemp et al Cancer Discovery 2023

KRAS G12Di has immunomodulatory impact on tumor and immune cell populations

MYELOID CELLS Decreased immunosuppressive myeloid cells

KRAS G12Di has immunomodulatory impact on tumor and immune cell populations

<u>CD8/CD4 cells</u> Increased cytotoxic CD8+ and CD4+ TILS

Kemp et al Cancer Discovery 2023

KRAS G12Di requires CD8/CD4 lymphocytes for antitumor effect

Kemp et al Cancer Discovery 2023

Confirmation: KRAS G12Di requires CD8+ cells for antitumor effect

Optimal immune combination therapy may involve multiple IO agents

Liu et al. Cancer Discovery 2025

KRASi appears to jumpstart or drive TME remodeling

Liu et al. Cancer Discovery 2025

Multi-RASi also alters TME and has benefit with combined with anti-PD1 therapy

Favorable Transformation of Tumor Immune Microenvironment

Durable Complete Responses with Checkpoint Inhibitor Combination

Re-challenge experiments demonstrated RMC-6236 treatment induced long lasting immunological memory

RVMD preclinical research

Syngeneic tumor model with CT26 cell line engineered to express KRAS^{G12C} M2 M θ = M2 macrophages; mMDSCs = Monocytic myeloid derived suppressor cells

Singh et al AACR 2022

Combination therapy clinical trial to test the hypothesis now ongoing

Phase 1b Combos: RAS(ON) Inhibitor Combinations with Pembrolizumab to Inform Potential Evaluation in 1L NSCLC

RMC-LUNG-101 Clinical Trial: Pembrolizumab⁽²⁾

Objectives: evaluate safety, tolerability and preliminary activity of RMC-6236 and RMC-6291 each combined with pembrolizumab **Patient Population:** RMC-6236 in KRAS-mutant NSCLC, RMC-6291 in KRAS G12C NSCLC **Study Status**: Recruiting

Vaccines approaches

ELI-002 Personalized mKRAS vaccine (Amplify-201)

0

Article

Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial

Received: 25 July 2023	A list of authors and their affiliations appears at the end of the paper			
Accepted: 11 December 2023				
Published online: 09 January 2024	Pancreatic and colorectal cancers are often KRAS mutated and are incurable when tumor DNA or protein persists or recurs after curative intent therapy			

Safety and immunogenicity of a first-in-human mutant KRAS long peptide vaccine combined with ipilimumab/nivolumab in resected pancreatic cancer: preliminary analysis from a phase I study

mKRAS vaccines now in clinic

American Association for Cancer Research FINDING CURES TOGETHER

Pooled long peptide mKRAS vaccine + ipilimumab/ nivolumab in resected PDAC and advanced CRC patients

mKRAS-specific immune responses seen and correlated with DFS

[©] American Association for Cancer Research

ACTIVITY NOTED IN PRETREATED MCRC

KRAS G12D

Pre-vaccine + α PD1/ α CTLA-4

2 months post-treatment

KRAS G12D

Pre-vaccine + α PD1/ α CTLA-4

2 months post-treatment

Weeks Post-Vaccination

Do not post. Dr. Daniel Haldar, Dr. Nilo Azad

Moving strategy earlier in care

Eligibility Criteria:

- Histologically or cytologically proven unresectable MSS CRC or PDAC
- Have one of the six KRAS mutations included in the vaccine
- Have received 4-6 months of 1st line chemotherapy +/- VEGFi or EGFRi

Rationale for anti-cancer vaccines + KRAS inhibitors

- KRAS mutations decrease MHC I expression needed for antigen presentation
 - KRAS inhibitors result in increased MHC 1 expression
- KRAS mutations result in T cell inactivation/exhaustion
 - Immune checkpoint inhibitors activate T cells
- Common GI cancers have low #s of TILs and neoantigens
 - We now have mKRAS-specific vaccines

KRAS inhibitor

ICI inhibition

+

╋

mKRAS specific vaccine

?Durable Clinical Benefit?

FINDING CURES TOGETHER

Prediction: PDAC patients in the next few years will ubiquitously receive KRAS inhibitors as part of their therapy

Conclusions

- We need to be working, now, on trial designs that explore:
 - Sequencing of direct KRAS inhibitors
 - Combination approaches for MAPK signaling and more broadly
 - Understanding and overcoming resistance
 - Exploring the effect of KRASi on the stroma and TME to develop other classes of agents
- Pharmaceutical companies and investigators need to work together to answer these questions quickly and together

Targeting KRAS in Pancreatic Cancer: A Long But Successful Climb

THIS IS THE BEST TIME EVER TO BE IN DRUG DEVELOPMENT FOR CANCER