Using Local Therapy Options for HCC: Transplant, resection, or other liver-directed therapy?

Kelly Lafaro MD, MPH, FACS Kelvin Hong, MBBCH

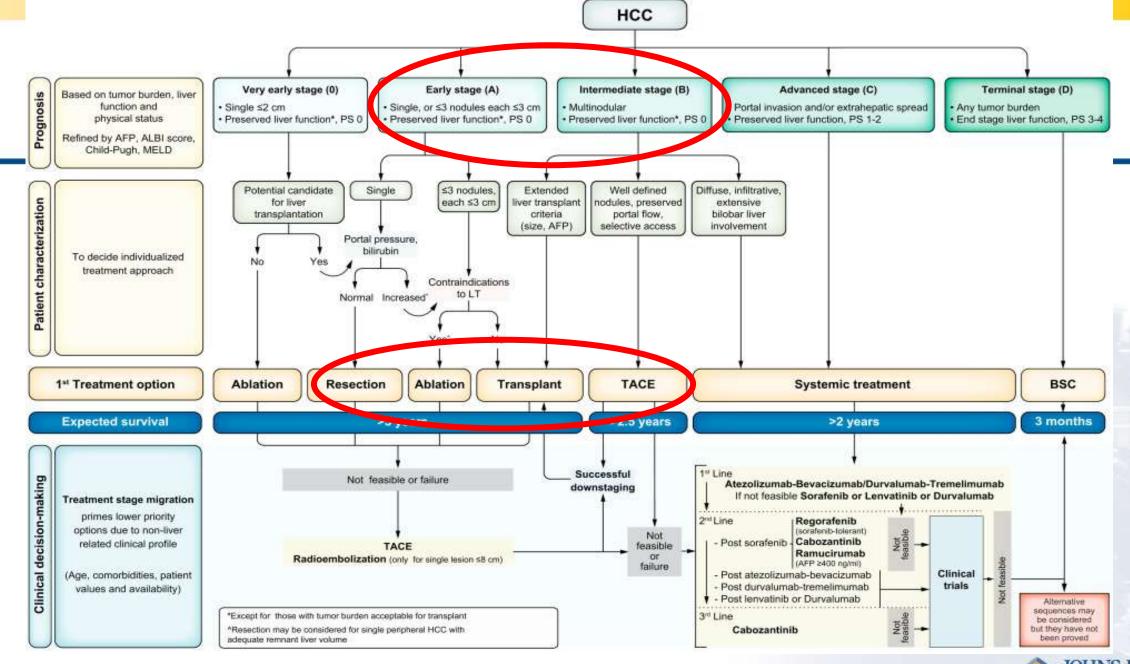
Surgical Management of HCC: Resection and Transplant

Kelly Lafaro MD, MPH, FACS

Assistant Professor Surgery and Oncology Division of Hepatobiliary and Pancreas Surgery Johns Hopkins School of Medicine

HCC Staging

- TNM alone fails to account for background liver dysfunction and PS
- Prognosis depends on:
 - tumor burden
 - degree of liver dysfunction
 - performance status
- Most commonly accepted staging system is Barcelona Clinic Liver Cancer (BCLC)



Treatments

- Curative:
 - Resection, Ablation, Transplantation

- Non-curative:
 - TACE, TARE, SBRT, Systemic Chemotherapy

Surgical Resectability of HCC Balance: Oncologic Benefit vs Risk of PHLF

Tumor Factors

- Solitary
 - Any size
 - No multifocal disease
- No main portal vein TT
- Complete resection
 - Debate regarding margin negative verses anatomic
- Always exceptions but this is standard
 - ie exceptional responders to systemic therapy

Background Liver Factors

- 30% FLR Non-cirrhotic
- 40% FLR Cirrhotic (Can PVE)
- ALBI Grade I (grade II if not transplantable)
- Child-Pugh A (Select B's)
- No clinically significant portal HTN
 - Plt >100K
 - Usually assessed biochemically and radiographically
 - Can do direct or indirect portal pressure measurement

Resection for Hepatocellular Carcinoma PVTT have poor survival

Surgical Treatment of Hepatocellular Carcinoma with Portal Vein Tumor Thrombus.

Shi, Lai, Li, Guo, Xue, Lau, Wu, Cheng. Ann Surg Oncol. 2010;17(8):2073-80

406 patients resected for HCC with PVTT

1- and 3-year overall survival34.4 and 13.0%

1- and 3-year disease-free survival13.3 and 4.7%

2° and 3°TT significantly better survival than those with main PVTT

- Portal Tumor thrombus
 - Poor prognosis regardless of treatment modality is acknowledged
- This may change with effective systemic therapies and well selected patients

Effect of portal vein embolization on treatment plan prior to major hepatectomy for hepatocellular carcinoma

Benjamin P.T. Loveday, Arash Jaberi, Carol-Anne Moulton, Alice C. Wei, Steven Gallinger, Robert Beecroft, Sandra Fischer, Anand Ghanekar, Ian McGilvray, Gonazolo Sapisochin, Paul D. Greig, Kongteng Tan, Sean P. Cleary

HPB (Oxford). 2019 Feb 20

- PVE for planned major hepatectomy for HCC
- FLR volume increased (median 430–574 cm³; p < 0.001)
- Tumor volume increased (median 161–240 cm³; p < 0.001)
- The treatment plan changed in 50%
- Tumor progression prevented resection in 25%
- Consideration should be given to further liver directed therapy in the setting of HCC and PVE.

TACE-PVE

Sequential arterial and portal vein embolizations before right hepatectomy in patients with cirrhosis and hepatocellular carcinoma

PVE

S. Ogata¹, J. Belghiti¹, O. Farges¹, D. Varma¹, A. Sibert² and V. Vilgrain²

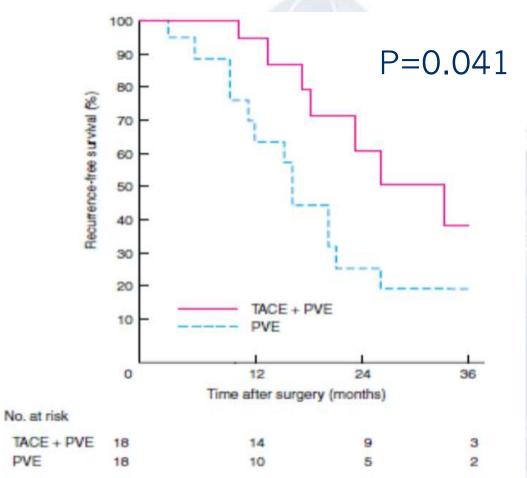



Fig. 2 Change in percentage future liver remnant (FLR) volume in the transarterial chemoembolization (TACE) plus portal vein embolization (PVE) and PVE alone groups, Values are mean(s.d.). *P = 0.013 (Student's t test)

Outpatient and Ambulatory Extended Recovery Robotic Hepatectomy: Multinational Study of 307 Cases

Park, James O MD, FACS; Lafaro, Kelly MD, MPH; Hagendoorn, Jeroen MD; Melstrom, Laleh MD, MS, FACS; Gerhards, Michael F MD, PhD; Görgec, Burak MD, PhD; Marsman, Hendrik A MD; Thornblade, Lucas W MD, FACS; Pilz da Cunha, Gabriela MD, PhD; Yang, Frank F MD; Labadie, Kevin P MD; Sham, Jonathan G MD, MBEE, FACS; Swijnenburg, Rutger-Jan MD, PhD; He, Jin MD, PhD, FACS; Fong, Yuman MD, FACS

- 307 patients
- Same day and next day discharges
- Readmission 1.6% (n=5)
- Mortality 0%
- Complications 2% (n=6)

- Multiple studies have shown improved postoperative outcomes with minimally invasive liver surgery
- Cirrhotic patients benefit the most from minimally invasive surgery

Resection for HCC

- Surgical resection is the treatment of choice for resectable HCC in non-cirrhotics
- Surgical resection favored in patients without CS-PH and CP- A
- Ablation is Equivalent to Resection for <3cm HCC
- Technically no size cut-off for Resection
 - Large tumors can be safely resected if sufficient functional liver remnant
- PVE can be utilized to increase FLR
- Systemic therapy (and in combination with local therapies) can be utilized to control/downstage/select locally advanced cases for curative intent resection

But What About Transplant....

- Most in the US are transplanted within Milan
 - Solitary less 5cm
 - 2-3 less than 3cm
- Expanded criteria
 - UCSF Solitary ≤ 6.5cm or ≤ 3 tumors ≤ 4.5cm and total tumor diameter < 8cm
 - Extended Toronto Criteria Any size or number!
 - Exclusions: cancer related symptoms, extrahepatic disease, vascular invasion, poorly differentiated
- Downstaging to within Milan
 - In highly selected cases can have excellent post-transplant outcomes similar to those within Milan
 - Typically for unresectable, particularly due to background liver disease

Transplantation for HCC

- LT is the treatment of choice for patients with more advanced cirrhosis, CS-PH, hepatic decompensation, and early stage HCC (ie Milan)
- LT should be a primary consideration for multifocal HCC
- LT is a highly effective, efficient therapy for early-stage HCC because it offers optimal treatment of both the underlying liver disease and the tumor.
- LT is associated with excellent long term survival rates for HCC within Milan criteria occurring in the setting of decompensated liver disease.

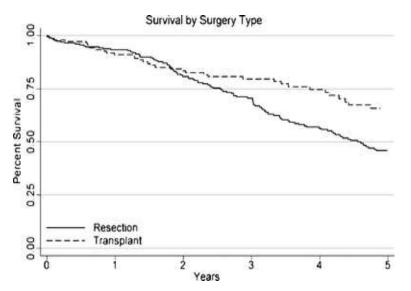
Transplantation for HCC in the US

The Milan Criteria

- **Mazzaferro** et al, NEJM 1996; 334(11):693
 - 48 patients transplanted, 1991 1994
 - No vascular invasion or +ve lymph nodes
 - No control group
 - 28 chemoembolization prior to Tx
 - Retrospective analysis based on pathologic staging:

Criteria: 1 tumor ≤ 5 cm or ≤ 3 tumors each ≤ 3 cm

_	Survival (4yr):		Overall	Disease-Free
	 Pathologic staging 	g <u><</u> Criteria	85%	92%
	 n=35 Pathologic staging n = 13 	g > Criteria	50%	59%

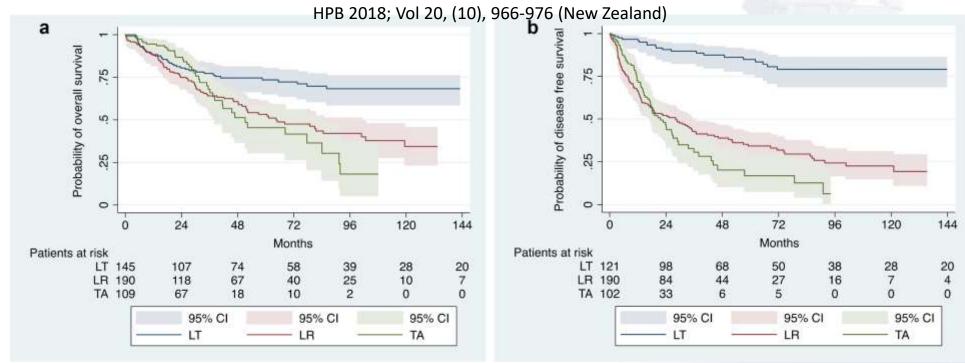

- Subsequent series *Transplant Proc* 2001;33:1442
 - 122 patients 1995 2000
 - 5 year survivals80%88%

Options for early HCC (within Milan Criteria)

Surgical Management of Early-Stage Hepatocellular Carcinoma: Resection or Transplantation?

Bellavance et al., 2011

1.00						,	
0.75			~~	1		7,10-1	
0.25 0.50 0.75				1	John	_	
0.5						7	~_
.25 .25							
0.00		Resection Transplant					
0	Ó	1	ż	Years	3	4	

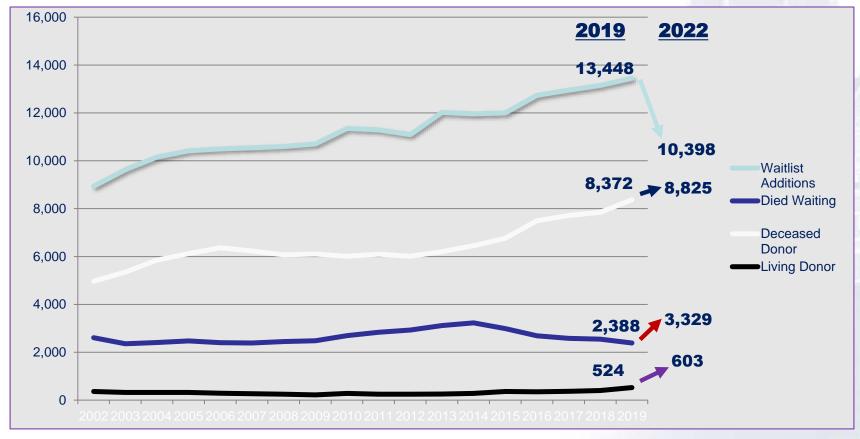

Disease Free Survival by Surgery Type

Overall Survival (%)	1 yr	3 yrs	5 yrs	P value
Transplant	91	79	66	<.001
Resection	93	71	46	

DF Survival (%)	1 yr	3 yrs		P value
Transplant	96	89	82	<.001
Resection	88	62	40	

Options for early HCC (within Milan Criteria)

Intention-to-treat analysis of liver transplantation, resection and thermal ablation for hepatocellular carcinoma



Intention-to-treat overall survival among the 444 HCC patients treated with curative intent. (b) Per treatment disease-free survival of 413 HCC patients who underwent LT, LR or TA. Twenty-three LT delisted patients, 1 peri-operative LT death and 7 incomplete TA patients excluded

Waitlist Additions, Transplants and Deaths on Waitlist

18% of the patients on the waitlist die before getting transplanted

Allocation Prioritization in the US uses MELD score

MELD Scoring System UNOS Modifications

Prognostic Factor	Regression Coefficient	P Value
Serum Creatinine	0.957	<0.01
(Log _e value)		
Serum bilirubin	0.378	<0.01
(Log _e value)		
INR	1.12	<0.01
(Log _e value)		

 $[0.957 \times Log_e(Cr) + 0.378 \times Log_e(bili) + 1.120 \times Log_e(INR) + 0.643] \times 10^*$

- Maximum Creatinine is 4 mg/dl
- Patients on dialysis Creatinine = 4mg/dl
- •Lowest score is 6, maximum for allocation is 40
- Serum Na+ has since been added to MELD (MELD-Na) for allocation.

How do HCC patients with low MELD scores get transplanted?

UNOS Automatic HCC Exception Points

Exception points:

- Mean Transplant MELD Score for the centers within 150 miles of the donor hospital minus 3 (MTS-3)
- Stage T2 HCC (LI-RADS 5 or biopsy proven) = "Milan Criteria"
 - One lesion >2 cm and <5 cm
 - Two or three lesions >1 cm and <3 cm in size)
- Waiting time of 6 months from submission request before MTS 3 kicks in.
- Patients with HCC beyond standard down-staging criteria who are able to be successfully downstaged to T2 may be appropriate for MELD exception
 - No evidence of metastasis
 - No macrovascular invasion
 - AFP < 1,000

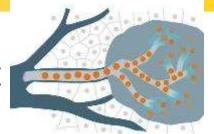
Conclusions

Surgery, ablation and liver transplant- curative intent

Surgery for solitary lesions not within transplant criteria

MUST access FLR before surgery

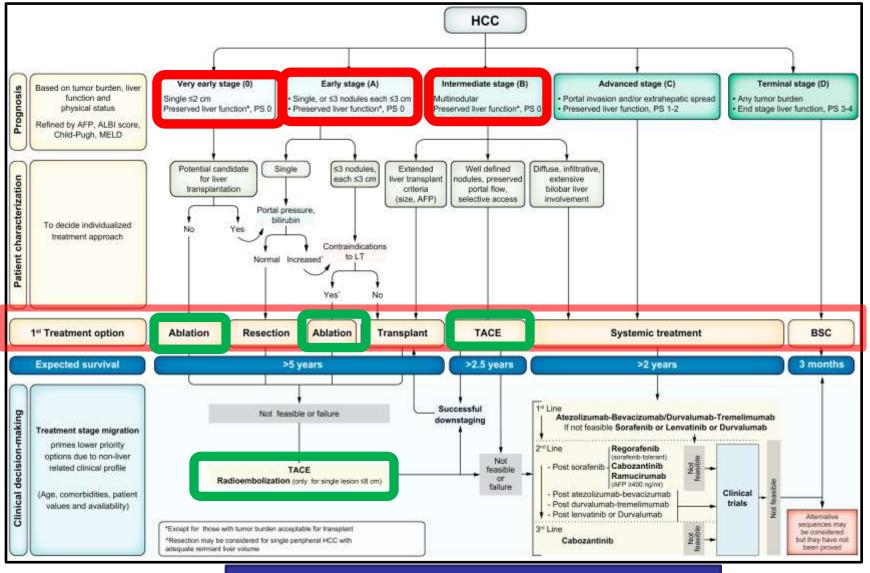
Thank You



Using Local Therapy Options for HCC: Transplant, resection, or other *liver-directed therapy?*

Kelvin Hong
Interventional Radiology
Johns Hopkins University

Interventional Radiology in HCC



- Long history in Dx and Mx since 1970's
- Supportive roles in Cirrhosis: TIPS, Ascites management
- Early days: HCC dismal options, 2 diseases
- IR:
 - 1. Ablation
 - 2. Chemoembolization TACE
 - 3. Radioembolization TARE
 - 4. Combination therapies

2022 BCLC staging treatment recommendations

Local therapies in Interventional Radiology

Maria Reig, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update, Journal of Hepatology, Volume 76, Issue 3,2022, Pages 681-693, ISSN 0168-8278, https://doi.org/10.1016/j.jhep.2021.11.018.

HCC: Curative therapies

Potentially curative therapies, in Very Early(0) and Early Stage (A)

- 1. Transplantation
- 2. Surgical resection
- 3. Ablation

HCC: Thermal Ablation

Curative therapies, in Early Stage (A)

Best for: Small HCCs, <3 cm, < 3 in number

Randomized clinical trials demonstrating equivalent long-term 5-year survival rates compared with surgical resection

Maria Reig, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update, Journal of Hepatology, Volume 76, Issue 3,2022, Pages 681-693,

Chen M S, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg. 2006;243(03):321–328

Feng K, et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. *J Hepatol.* 2012;57(04):794–802

Thermal Ablation: curative for non resectable early stage HCC

Original Article

J Liver Cancer 2024;24(1):71-80 pISSN 2288-8128 • eISSN 2383-5001 https://doi.org/10.17998/jic.2023.09.11

Treatment options for solitary hepatocellular carcinoma ≤5 cm: surgery vs. ablation: a multicenter retrospective study

Kazuya Kariyama¹, Kazuhiro Nouso¹, Atsushi Hiraoka², Hidenori Toyoda², Toshifumi Tada¹, Kunihiko Tsuji², Toru Ishikawa⁵, Takeshi Hatanaka², Ei Itobayashi², Koichi Takaguchi², Akemi Tsutsui², Atsushi Naganuma³², Satoshi Yasuda², Satoru Kakizaki², Akiko Wakuta², Shohei Shiota¹, Masatoshi Kudo², Takashi Kumada¹⁴

Patients 2067 patients with solitary ≤ 5cm hepatocellular carcinoma Ablation (N=1248) Surgery (N=819) 1:1 propensity score matching

Results

	Size of HCC			
	≤2 cm	>2 cm and ≤3 cm	>3 cm and ≤5 cm	
Surgery vs Ablation	OS: similar (13.7 years vs 11.2 years) RFS: similar (5.9 years vs 6.0 years)	OS: similar (11.0 years vs 7.2 years) RFS: similar (4.9 years vs 3.0 years)	OS: similar (6.7 years vs 6.0 years) RFS: Surgery is better (3.6 years vs 2.0 years)	

Conclusion

- Surgery and ablation could be equally used as a treatment for solitary HCC ≤3 cm.
- For HCCs measuring 3–5 cm, the OS was not different between therapies, Thus, ablation and less invasive therapy can be considered a treatment option; however, special caution should be taken to prevent recurrence.

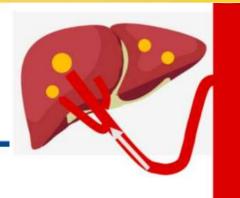
LIVER CANCER

Cureus. 2024 Aug; 16(8): e67938.

Published online 2024 Aug 27. doi: 10.7759/cureus.67938

PMCID: PMC11426338

777. • 370. ·


Comparison of Radiofrequency Ablation and Microwave Ablation for the Management of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

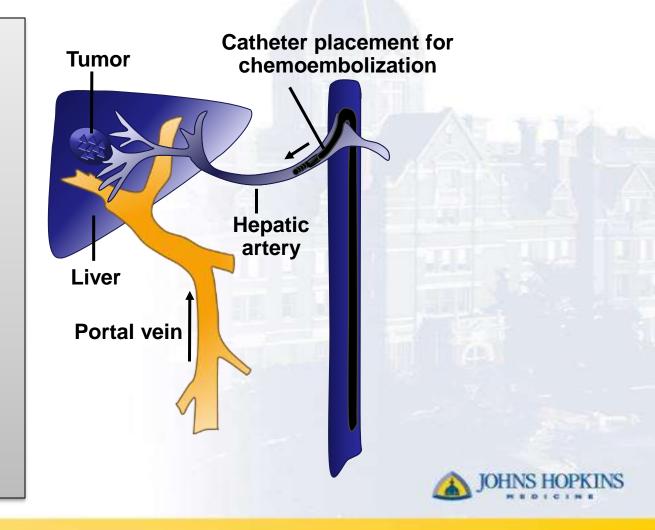
Monitoring Editor: Alexander Muacevic and John R Adler

- systematic review
- 6 randomized controlled trials, including 826 patients
- MWA resulted in lower LTP and higher complication rates compared to RFA
- NO difference in OS rates
- similar local tumor recurrence-free survival rates
- Both techniques appear to be effective and safe

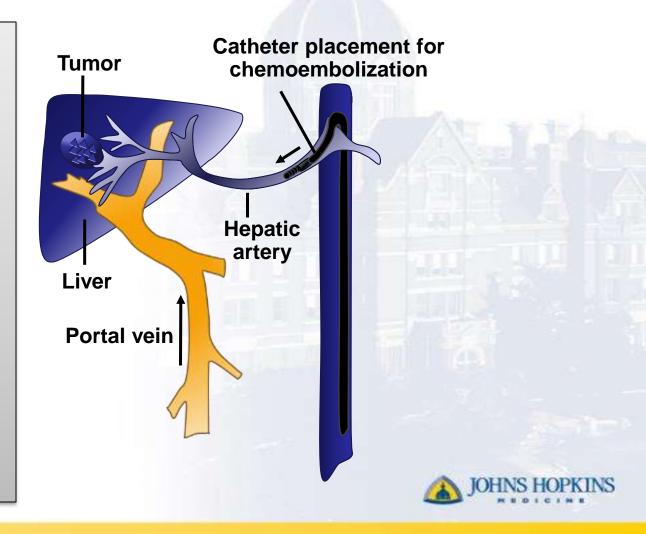
Intra-arterial treatments

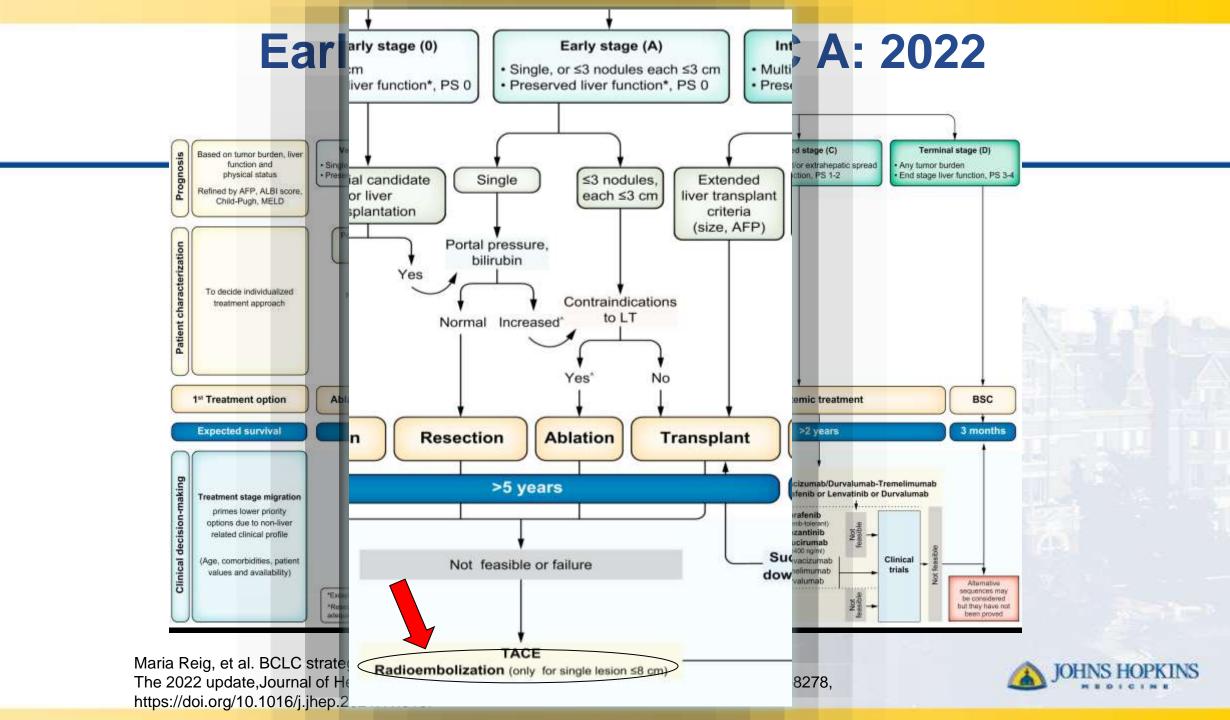
1. Chemoembolization (TACE)

Drug-eluting Bead TACE

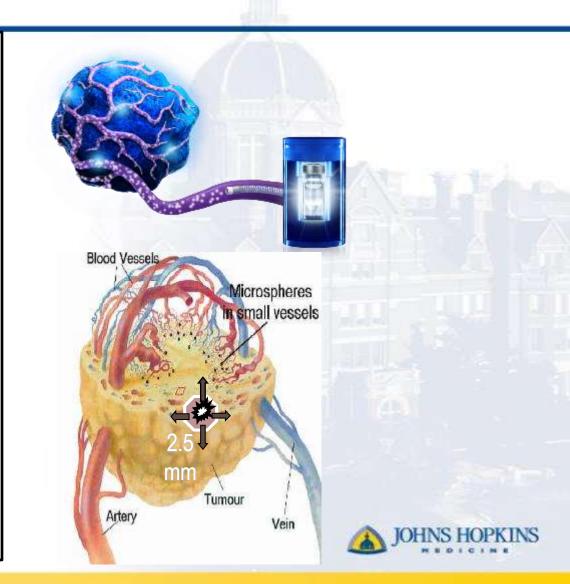

Bland Embolization TAE

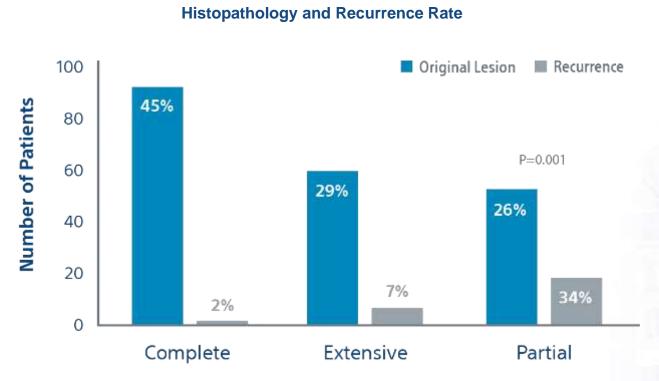
2. Radioembolization (TARE)


Treatment: Chemoembolization


- Normal liver gets <u>75%</u> supply from **portal vein** and <u>25% from</u> <u>hepatic artery</u>
- Tumor receives most from the hepatic artery
- Injection into the hepatic artery spares most of the normal liver
- Embolization of the hepatic artery prevents systemic absorption of chemotherapy agents and induces ischemic necrosis of tumor

Chemoembolization (TACE) Modern Roles


- Intermediate stage BCLC
 B: multifocal disease
- 2. Bridge to Transplantation
- 3. Pre-transplant downstaging
- 4. Pre-resection downstaging
- Advanced disease palliation in combination with systemic
- 6. Combination therapies stage migration


Y90 Radioembolization (TARE)

- High interest in USA sites, FDA approved in 1999 including PVT
- high therapeutic efficacy and low rates of adverse events
- Higher doses of radiation to smaller volumes and greater tumoricidal effect
- Insoluble glass or resin microspheres.
 Beta radiation; half-life 64 hrs
- Minimization of damage to non-tumor tissue: injected into angiosome
- Mean penetration: 2.5 mm
- Patient ease: <u>outpatient procedure</u>; <u>Well</u> tolerated
- Single treatment step
- Need up to 3 months to determine effect

TARE: Downstage and Bridging:

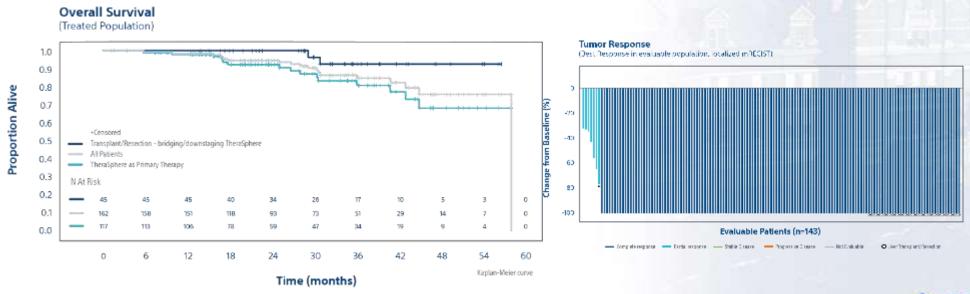
High level of tumor explant necrosis

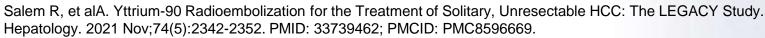
74% of patients showed complete or extensive tumor necrosis

Median recurrence-free survival following liver transplant of 10 years

The safety and effectiveness of TheraSphere in patients with Degree of fortume to Explant Nedrosis

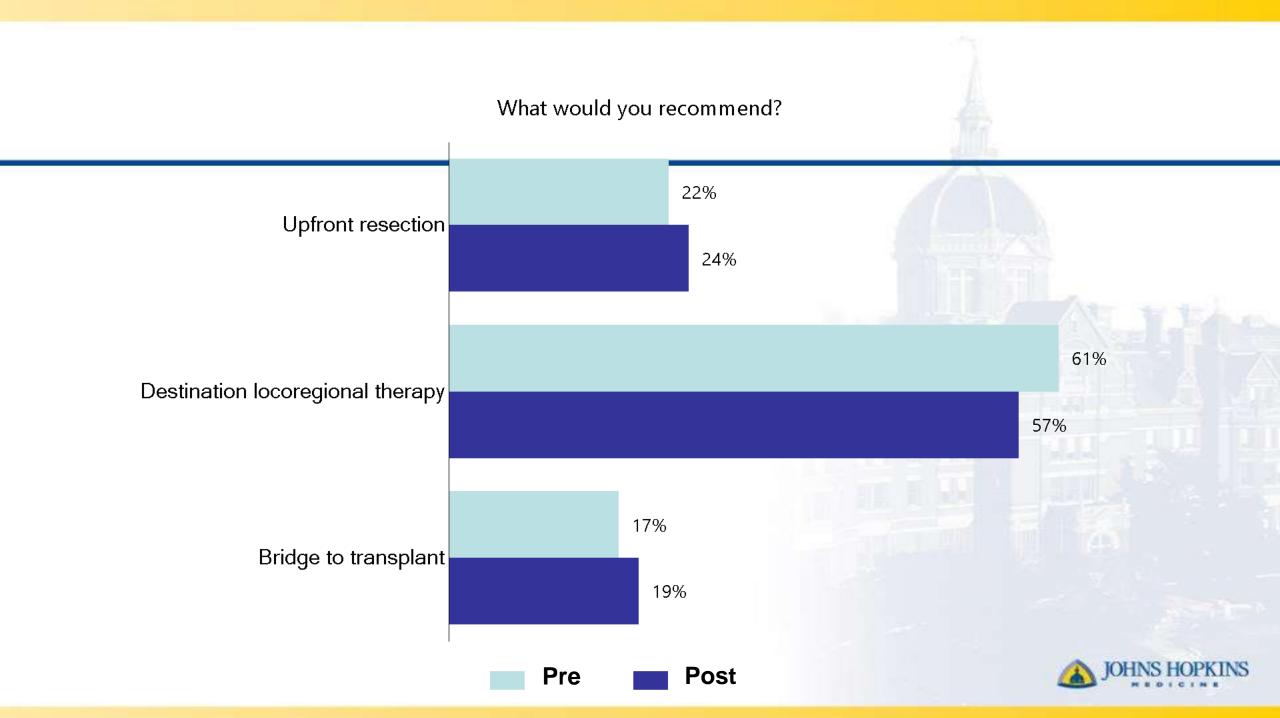
Gabr A, Salem R et al. Liver Transplantation Following Yttrium-90 Radioembolization: 15-Year Experience in 207-Patient Cohort. Hepatology. 2021 Mar;73(3):998-1010. doi: 10.1002/hep.31318. PMID: 32416631.


TARE: Legacy study pivotal study


- multicenter, single-arm, retrospective study three site
- BCLC: A and C (39.5%) but no PVT thrombosis
- Single lesion Median 2.6 cm
- Follow up: 29.9 months
- Bridge to transplantation 21.0% (34 of 162)
- Or Resection 6.8% (11 of 162), Primary treatment
 72.2% (117 of 162)

TARE: Legacy study pivotal study Durable and high response

- 93% OS rate in neoadjuvant at 3 years
- 84% OS rate in primary therapy at 3 years
- 96.8% single treatment,100% with 2



Conclusion:

- Interventional Radiology treatments spans the breadth of HCC staging (BCLC A to C)
- Cemented in national and international guidelines
- Ablation (curative), TACE, TARE (segmentectomy)
- HCC best treated in MDC setting

