

Nurse Practitioners on the Frontlines: Integrating Multicancer Early Detection Testing

This CME activity for ACCME credit is provided by Integrity Continuing Education, Inc. This CE activity for ANCC and AANP credit is jointly provided by Global Education Group and Integrity Continuing Education, Inc. This activity is supported by an education grant from GRAIL, LLC.

Learning Objectives

- Describe the science that underlies multicancer screening tests and the rationale for their application
- Differentiate among new and emerging blood-based multicancer screening tests
- Employ strategies to reduce barriers to effective population-scale cancer screening, including health and sociodemographic disparities, and challenges in patient engagement
- Utilize cancer screening integration tools that increase patient engagement, improve patient outcomes, and promote continuity of care

(1) INTEGRITY

Overview of Cancer Screening

Current USPSTF Recommendations for Cancer Screening

Cancer	Grade	Population	Modality/recommendation	Pathway and outcome
Cervical*	А	Women, 21 to 65 YO	 Regular screening (3–5 years) using cervical cytology and/or HPV tests 	 HPV testing: USPSTF → CMS NCD
Colon	A/B/C	Adults, 45 to 75 YO (A: 50–75 YO, B: 45–49 YO, C: >75 YO)	 Regular annual screening Multiple effective methods available 	 Legislation → CMS NCD
Breast*	В	Women, 50 to 74 YO	 Biennial screening mammography <50 years individual 	 Mandate for coverage with no cost sharing (Balanced Budget Act of 1997, Section 4101)
Lung	В	Adults, 50 to 80 YO, with a history of smoking	 Annual LDCT screening 20 pack-year history and currently smoke or quit in the past 15 years 	• USPSTF \rightarrow CMS NCD
Prostate	с	Men, 55 to 69 YO	 Periodic PSA screening on a case-by-case basis 	• N/A

*Update currently in progress.

HPV, human papillomavirus; CMS, Centers for Medicare & Medicaid Services; NCD, National Coverage Determination; N/A, not applicable;

LDCT, low-dose computed tomography; PSA, prostate-specific antigen; USPSTF, United States Preventive Services Task Force; YO, years old.

American Cancer Society. Guidelines for the early detection of cancer. Available at: https://www.cancer.org/cancer/screening/american-cancer-society-guidelines-for-the-early-detection-of-cancer.html; USPSTF. Screening for hypertensive disorders of pregnancy. Available at: https://www.uspreventiveservicestaskforce.org/uspstf/

Suboptimal Use of Cancer Screening Tests in the US

28.5% of women ages 50 to 74 are not up to date with breast cancer screening

17% of women ages 21 to 65 are not up to date with cervical cancer screening

38% of adults ages 50 to 75 are not up to date with colorectal cancer screening

96% of adults ages 55 to 80 who have smoked \geq 1 pack of cigarettes per day for 30 years* and currently smoke or have quit in the past 15 years are not up to date with lung cancer screening

*Or the equivalent (eg, two packs per day for 15 years).

American Association for Cancer Research. AACR Cancer Disparities Progress Report 2020. Available at: https://cancerprogressreport.aacr.org/wp-content/uploads/sites/2/2020/09/AACR_CDPR_2020.pdf

Unmet Needs in Cancer Screening

- Lack of available screening tests for multiple cancer types
- Inadequate awareness of and access to screening in certain populations
- Lack of knowledge regarding specific recommendations for screening
- Misconceptions about the tests themselves
- Low patient engagement
- Disparities in screening practices across different communities/populations

Disparities in Cancer Screening Across Populations

Breast Cancer

Example of Disparity: In 2018, only 63.0% of women with less than a high school education were up to date with breast cancer screening compared to 80.4% of those with a college degree

Cervical Cancer

Example of Disparity: In 2018, only 64.7% of gay or lesbian women were up to date with cervical cancer screening compared to 83.4% of straight women

Colorectal Cancer

Example of Disparity: Women living in rural areas between 2017 and 2020 were 19% less likely to be up to date with colorectal cancer screening than those living in urban areas

Lung Cancer

Example of Disparity: Compared to eligible non-Hispanic White individuals, eligible non-Hispanic Black individuals were 53% less likely to report that they have completed LDCT in the past year

Prostate Cancer

Example of Disparity: In 2018, only 8.9% of uninsured men age 65 and above were up to date with prostate cancer screening compared to 34.4% of those who had any private insurance

Kaiser Family Foundation. Racial disparities in cancer outcomes, screening, and treatment. February 3, 2022. Available at: https://www.kff.org/racial-equity-and-health-policy/issue-brief/racial-disparities-in-cancer-outcomes-screening-and-treatment/; Liu D, et al. J Racial Ethn Health Disparities. 2021;8(1):107-126; American Association for Cancer Research. AACR Cancer Disparities Progress Report 2020. Available at: https://cancerprogressreport.aacr.org/wp-content/uploads/sites/2/2020/09/AACR_CDPR_2020.pdf

Disparities are influenced by numerous factors that include geographic location, income, education, national origin, and race/ethnicity

INTEGRITY

(1) INTEGRITY

NPs Are Uniquely Well-Positioned to Promote Improvements in Cancer Screening

- Primary point of contact for health care in rural and underserved areas
- Expanding role in primary care

Advanced skill in patient education and engagement, both of which are associated with greater adherence to cancer screening recommendations

Positioned to advocate for and support effective screening policies

(1) INTEGRITY

Overview of Blood-Based Multicancer Tests

Cowling T, Loshak H. An overview of liquid biopsy for screening and early detection of cancer. In: CADTH Issues in Emerging Health Technologies; 2016.

Comparison of Liquid Biopsy vs Traditional Tissue Biopsy

	Liquid Biopsy	Tissue Biopsy		
Invasiveness	Minimal	Organ penetration required Repeated surgeries not feasible		
Time	Shorter	Longer		
Sensitivity	High	Low		
Cost of sample isolation	Lower	Higher		
Clinically validated	√?	✓		
Enables histological evaluation	×	\checkmark		
one SN, et al. <i>Mol Cancer</i> . 2022;21(1):79.				

Evaluating the Utility of MCED Testing: Sensitivity, Specificity, and Positive and Negative Predictive Values

- **Sensitivity** = ability to correctly identify people with the disease
- **Specificity** = ability to correctly identify people without the disease
- **PPV** = probability of *having cancer* given a positive test
- **NPV** = probability of *not having* cancer given a negative test
- NNS = number of individuals needed to screen to detect one true positive

Multicancer Screening: The Power of Aggregate Prevalence

Prevalence

Defined as the proportion of the population with a specific trait in a given time period

PPV

Given a positive test, what is the probability of actually having cancer?

- Determined by specificity and prevalence
- Aggregate prevalence rates of all cancers vs single-organ screening means a much higher PPV is achievable

Ahlquist DA. NPJ Precis Oncol. 2018;2:23. doi:10.1038/s41698-018-0066-x

(1) INTEGRITY

(1) INTEGRIT

Multicancer Screening: The Power of Aggregate Prevalence

NNS

Among GI cancers, only CRC is considered prevalent enough for population screening

- NNS = 167 for colorectal cancer
- NNS = 500 for pancreatic cancer
- NNS = 1000 for esophageal cancer
- NNS for all GI cancers = 83
- NNS for all cancers = 33

CRC, colorectal cancer; GI, gastrointestinal. Ahlquist DA. NPJ Precis Oncol. 2018;2:23. doi:10.1038/s41698-018-0066-x

Types of cfDNA-based Tests

DNA Methylation Profiling in Early Cancer Detection: Rationale for Use

DNA methylation

- In normal cells: most repetitive sequences are methylated whereas TSG promoters are unmethylated and active, leading to active tumor suppression (green check mark)
- In cancer cells: repetitive sequences become unmethylated and active (contributing to genomic instability) whereas TSG promoters are methylated and inactive, promoting cell aggressiveness and escape (red cross mark)
- Occurs <u>early</u> in tumorigenesis and <u>can be</u> <u>tissue- and cancer-type specific</u>

Selected MCED Tests in Development (DNA-methylation Based)

Tumor Types	Samnle*	Methods	Main Findings	Test/	
>50 cancer	 2482 cancer patients 4207 healthy individuals 	Bisulfite	 Developed a target methylation assay combined with a machine learning classifier for detecting and discrimination TOO in >50 cancer types using cfDNA 54% sensitivity and 99.3% specificity obtained in the validation set 93% accuracy for TOO prediction 	Galleri®	 Numerous MCED tests are currently in development Galleri[®] is currently the
types	 2823 cancer patients 1254 healthy individuals 	sequencing	 Developed a refined assay and classifiers optimized for screening purposes and performed clinical validation 51% sensitivity and 99.5% specificity were obtained 88.7% accuracy for TOO prediction PPV of 44.4% and NPV of 99.4% for cancer detection 	(GRAIL)	only commercially available MCED test. Though not FDA
Lung, colorectal, gastric, liver, and esophageal	 191 prediagnosis cancer samples 223 postdiagnosis cancer samples 414 healthy samples 	Bisulfite sequencing (using semi- targeted PCR libraries)	 Developed PanSeer, a blood test combining the analysis of 477 cancer-specific differentially methylated regions with machine learning for cancer detection 87.6% and 94.9% sensitivity for postdiagnosis and prediagnosis samples, respectively; 96.1% specificity obtained in the testing set Cancer detected by PanSeer up to 4 years before conventional diagnosis with 95.7% sensitivity 	PanSeer (Singlera Genomics)	approved, it is available under a CLIA waiver and can be obtained with a prescription**
*Sample fro CLIA, Clinio Brito-Roch	*Sample from plasma; **CLIA allows use of the test because the testing itself is done in a central laboratory. CLIA, Clinical Laboratory Improvement Amendments; PCR, polymerase chain reaction. Brito-Rocha T, et al. <i>Cells</i> . 2023;12(6).				

Selected MCED Tests in Development (Circulating Protein- and cfDNA Mutation-Based)

Tumor Types	Sample*	Methods	Main Findings	Test/ Company
Lung, breast, colorectal, pancreas, gastric, liver, esophageal, and ovarian	 1005 cancer patients 812 healthy individuals 9911 women not previously known to have cancer 	- Targeted sequencing and bead- based immunoassay	 Developed CancerSEEK, a blood test based on cfDNA mutations on 16 genes and 8 circulating proteins combined with machine learning for cancer detection and TOO discrimination 62% sensitivity, 99% specificity, and AUC of 0.91 were obtained for discriminating cancer from healthy samples 63% accuracy for TOO prediction Evaluated feasibility of CancerSEEK testing combined with PET-CT to detect cancer in a prospective cohort Blood test was positive for 134 participants. 127 were further evaluated by PET 64 showed imaging concerning for cancer 26 were proven to have caner by biopsy or other method 27.1% sensitivity, 98% specificity, and 19.4% PPV were obtained for blood testing alone 15.6% sensitivity, 99.6% specificity, and 28.3% PPV were obtained for blood texting combined with PET 	CancerSEEK (Exact Sciences)
Sample from plasm AUC, area under th Brito-Rocha T. et al.	a. e curve; PET-CT, pos <i>Cells</i> , 2023:12(6).	itron emission c	omputed tomography.	NTEGRITY

MCED Test	Study	Participants	Study Objective
	CCGA	15,254 ď೪	Demonstrate feasibility of detecting cancer and predicting tissue of origin with minimal false positives
	PATHFINDER	6621 ďŶ	Evaluate implementation in clinical practice
Galleri®	STRIVE	99,481 ç	Confirm performance in individuals with no known active cancer diagnosis
	SUMMIT	~25,000 ♂♀	Evaluate performance in individuals with no known active cancer diagnosis and clinical utility in a high-risk population
	PATHFINDER 2	20,000 ďŶ	Evaluate safety and performance in individuals eligible for guideline- recommended cancer screening
	SYMPLIFY	6238 ď	Evaluate performance in symptomatic patients referred from primary care
CancerSEEK	DETECT-A	10,006 ♀	Demonstrate feasibility when combined with PET-CT to screen for cancer and guide intervention
PanSeer	Taizhou Study	1,379 ď ^ç	Confirm performance in asymptomatic individuals years before conventional diagnosis in a longitudinal study

Findings from CCGA Substudy 1

- Clinical LOD is a useful benchmark to assess cfDNA-based test performance
- cTAF accounts for cfDNA cancer signal variation across cancer types and stages
- cfDNA methylation was the most promising genomic feature for cancer signal detection
- The results informed the development of a cfDNA-based MCED test

cTAF, circulating tumor allele fraction; LOD, clinical limit of detection; MCED, multicancer early detection. Jamshidi A, et al. *Cancer Cell*. 2022;40(12):1537-1549.e1512.

Evaluation of MCED Testing in a Clinical Setting (PATHFINDER) PATHFINDER study design ~6200 participants H Assessed for Eligibility MCED test Questionnaire Blood drawn Blood received, Test report Inclusion criteria ordered and shipped accessioned. generated and processed years old ≥50 I and Cohort A) or Cohort В ≥1 of 3 specific No additional risk risk factors factors Signal detected Signal not detected æ Test result communicated **Exclusion criteria** Test result reported Study blood Provider determines follow-up Participant to continue draw recommended screening <50) years old Diagnostic resolution Cancer or no cancer or Q Clinical suspicion/diagnosis of Cancer status **Cancer status** Research cancer or treatment for cancer blood draw Assessed at 12 months Assessed at 12 months within 3 years of enrollment Nadauld LD, et al. Cancers (Basel). 2021;13(14).

PATHFINDER Findings: Time to Achieve Diagnostic Resolution

	True Positive n=35	False Positive n=57	Total N=92
Extent of diagnostic testing (Primary)	n=33	n=57	n=90
>1 Imaging test, %	90.9	93.0	92.2
>1 Invasive procedure, %	81.8	29.8	48.9
Time to resolution, median days (IQR)	57 (33, 143)	162 (44, 248)	79 (37, 219)

- Time to achieve diagnostic resolution (confirm presence or absence of cancer): 79 days
- Diagnostic resolution achieved within 3 months for 73%

IQR, interquartile range.

Beer TM, et al. J Clin Oncol. 2021;39(15_suppl):3010-3010; GRAIL. GRAIL announces final results from the PATHFINDER study. Available at: https://grail.com/press-releases/grail-announces-final-results-from-the-pathfinder-multi-cancer-early-detection-screening-study-at-esmo-congress-2022/; Schrag D. ESMO 2022; Abstract 9030. Ann Oncol. 2022;33(7):S417-S426.

PATHFINDER Findings: MCED Test Findings

Cancer Signal	Specificity and	Identification of	Safety	Psychological
Detection	Sensitivity	TOO		Impact of Test
 Signal detected in 92/6621 (1.4%) participants 71% for cancer types with no routine screening available 40% of non- recurrent cancers were Stage I or II 	 44.6% PPV 98.6% NPV 99.1% specificity 189 NNS to detect 1 cancer 	 96.3% accuracy 13 types of cancer diagnosed 	 No study-related serious AEs No diagnostic workup-related AEs 	 97.1% highly satisfied (92% true positive; 82.3%) false positive) 83% Very or Extremely Confident the test is beneficial 95% Likely or Very Likely to follow recommended screening

Beer TM, et al. J Clin Oncol. 2021;39(15_suppl):3010-3010; GRAIL. GRAIL announces final results from the PATHFINDER study. Available at: https://grail.com/press-releases/grail-announces-final-results-from-the-pathfinder-multi-cancer-early-detection-screening-study-at-esmo-congress-2022/; Schrag D. ESMO 2022; Abstract 9030. Ann Oncol. 2022;33(7):S417-S426.

SYMPLIFY Finding		
Cancer Signal Detection	Specificity and Sensitivity	Identification of TOO
• Signal detected in 323 participants	 75.5% PPV 97.6% NPV 66.3% sensitivity 98.4% specificity 	• 85.2% accuracy
Nicholson BD, et al. Lancet Oncol. 2023;24(7):73:	3-743.	

Sensitivity of MCED-Detected Cancer Signal, by Stage and Site

	Total Cancers (n=368)	Cancer Signal Detected (n=244)	Sensitivity (95% CI)
Overall	-	-	66.3% (61.2-71.1)
Cancer stage			
I	95	23	24.2% (16.0-34.1)
П	63	36	57.1% (44.0-69.5)
III	108	92	85.2% (77.1–91.3)
IV	86	82	95.3% (88.5–98.7)
Uncertain	16	11	68.6% (41.3-89.0)
Cancer stage group			
I–II	158	59	37.3% (29.8-45.4)
I–III	266	151	56.8% (50.6-62.8)
I–IV	352	233	66.2% (61.0-71.1)
II–IV	257	210	81.7% (76.4-86.2)
III–IV	194	174	89.7% (84.5–93.6)
Cancer site			
Colorectal	137	97	70.8% (62.4–78.3)
Lung	81	55	67.9% (56.6–77.8)
Lymphoma	14	8	57.1% (28.9-82.3)
Oesophagogastric	22	21	95.5% (77.2–99.9)
Other*	47	30	63.8% (48.5–77.3)
Ovarian	14	9	64.3% (35.1-87.2)
Pancreas	12	11	91.7% (61.5–99.8)
Prostate	11	1	9.1% (0.2-41.3)
Uterus	30	12	40.0% (22.7-59.4)

*Other includes the following cancer site categories: breast (7 cases), mesothelioma (6 cases), anus (5 cases), kidney (5 cases), liver and bile duct (4 cases), cervix (4 cases), cancer of unknown primary (3 cases), urothelial (3 cases), vaginal (2 cases), bladder (2 cases), and one instance each of bone and soft tissue, central nervous system, gallbladder, head and neck, malignant immunoproliferative disease, and thyroid. Nicholson BD, et al. *Lancet Oncol*. 2023;24(7):733-743.

DETECT-A: MCED Testing Combined With PET-CT to Screen for Cancer and Guide Intervention

- CancerSEEK MCED test used to screen 9,911 women without history of cancer
- MCED coupled with diagnostic PET-CT identified cancers including those not detected by SOC screening, the majority of which were localized or regional
- Additional biomarkers, new analytic methods, and algorithms currently being incorporated in the development of the next generation of the test

(1) INTEGRITY

DETECT-A (Observational Follow-Up Study)

Study objective:

• Evaluation of clinical outcomes in patients diagnosed with cancers as a result of abnormal MCED results

Median follow-up:

• 4.4 (IQR: 4.1-4.6) years from initial MCED test

Outcomes:

- MCED testing detected cancers earlier in patients who, when treated subsequently with conventional methods, achieved long-term survival
- Half of all patients with an MCED-detected cancer remained cancer-free after treatment >4 years (median) after initial MCED test

Buchanan AH, et al. J Clin Onc. 2023;41(16_suppl):3037-3037.

Overcoming Barriers to Cancer Screening

CDC-Recommended Evidence-Based Interventions to Improve Cancer Screening

(1) INTEGRIT

Case Patient Description

 Jonathan is a 52-year-old Black man with a family history of prostate cancer who presents for routine primary care visit. He has recently come across information about MCED tests and requests further information. Specifically, he would like to know if it might be a good option for him.

Audience Question

What type of education is needed to help guide his evaluation of this testing option?

- A. Implications of test results (positive or negative)
- B. Information on the likelihood of getting a false positive or a false negative (test sensitivity and specificity)
- C. Rationale for how the test works

Which of the following most strongly influences whether or not you would offer testing to a patient like Jonathan?

- A. A family history of cancer
- B. Patient has a history of cancer
- C. Whether the patient is up to date on screening
- D. Patient ability to pay for the test

(1) INTEGRITY

Best Practices for MCED Implementation: Effective Discussions With Patients

Eligible populations for existing tests

- Patients age 50 years and older at elevated cancer risk
- Not recommended for individuals who are pregnant, aged 21 years or younger, or undergoing active cancer treatment
- Importance of interpretation of results as 1 tool in a set of therapeutic screening options
- Important and continuing role of other tests (eg, mammography, colonoscopy, PSA screening, cervical cancer screening)

Gelhorn H, et al. Patient. 2023;16(1):43-56; Hackshaw A, et al. Cancer Cell. 2022;40(2):109-113.

Promoting Effective Shared Decision-Making: What Patients Need to Know About MCED

Acceptance	 How accurate is the test What kinds of cancer can and cannot be detected? Can it detect rare cancers? What kinds of regulations and approvals has the screening test gone through? Is this test effective for those in remission? Can it detect precancerous cells? Can it detect the difference between precancerous and cancerous cells? Could it detect multiple diagnoses with 1 test? What kinds of information and support are available with a positive screening result? What are the side effects of the screening test, if any? Could this kind of screening be sensitive enough for aggressive forms of cancer in which the results may change within weeks?
Access	 Where would I get this test? My primary care physician's office? Who can get it (everyone in the community or only certain subsets of based on cancer risk, history, age, etc)? Would this be available to those older than 70 years? Do people need to have symptoms or a family history of cancer? How often can someone use the screening?
Affordability	Will insurance cover the cost of screening? What would it cost me?
Accountability	 Who has access to the screening results? What does the pharma company do with our data? How might the results relate to results of genetic testing for hereditary cancer?

(1) INTEGRITY

(1) INTEGRIT

Current Commercially Available MCED Test (Not Yet FDA Approved)

To order the test:

- List Price: \$949 (may vary depending on practice/provider)
- Visit <u>www.galleri.com/hcp.order</u>
- Complete a blood draw per test instructions
- Receive results through provider portal, typically within 10 days of reception of blood specimen
- Results:
 - Result 1: Cancer signal NOT detected
 - Result 2: Cancer signal detected, with signal origin. Confirm with diagnostic testing

Case Patient Description

 Marlena is a 58-year-old White woman with a family history of ovarian cancer. She has recently undergone MCED testing. The results indicate a positive signal for cancer and cfDNA fragmentation patterns suggest a pancreatic TOO

What is your next step once Marlena's test results have been received?

- A. Explain the meaning of cancer signal detection
- B. Order a blood work-up
- C. Order a biopsy
- D. Repeat the MCED test to ensure results

Audience Question

What additional testing is needed to diagnose Marlena?

- A. Blood tests
- B. Imaging studies
- C. Tissue biopsy
- D. All of the above

How would you sequence Marlena's follow-up evaluation referrals?

- A. Blood work, imaging, biopsy
- B. Imaging, blood work, biopsy
- C. Biopsy, imaging, blood work

Discussing MCED Testing Results With Patients

- Explain the meaning of signal detection and the potential for false-positive or false-negative results
 - Psychosocial impact of screening is relatively low overall and short-lived, even with false-positive results
 - Those at high cancer risk tend to experience more symptoms of anxiety
- Discuss more intensive screening (eg, PET-CT) for patients with a positive signal

Kim A, et al. BMC Cancer. 2022;22(1):223.

(1) INTEGRIT

What is the most challenging aspect of supporting a patient after a positive screening test result?

- A. Ensuring they follow up with diagnostic referrals
- B. Helping them navigate cost barriers to obtaining appropriate diagnosis
- C. Helping them manage the long-term negative psychological impact

Barriers to Seeking Further Detection and Testing After a Positive Screening Test Result

 Table 1. Common Barriers to Seeking Further Detection and Testing After a Positive Cancer

 Screening Test Result^{a,b}

Psychological Barriers	Access Barriers
 In shock/don't believe results/no symptoms Don't know or understand next steps or where to go Fear Don't believe traditional treatment like chemotherapy are safe Don't understand how serious this may be 	 Medical centers are far away Need practical support like transportation or child care Can't take off time from work Don't have a loved one to serve as a caregiver Cost

^aFrom a discussion with Livestrong cancer Institutes' Community Cancer Advisory Board on Multicenter Early Detection. Monthly Online Meeting; August 13, 2020 (facilitated and recorded on Zoom). ^bSee Fiscella K, Humiston S, Hendren S, et al. Eliminating disparities in cancer screening and follow-up of abnormal results: what will it take? J Health Care Poor Underserved. 2011;22:83-100. doi: 10.1353/hpu.2011.0023³⁷ Schear RM, et al. Cancer. 2022;128(S4):909-917.

INTEGRITY

Key Points

- Early diagnosis is crucial for achieving improved treatment outcomes and survival in patients with cancer
- Blood-based biopsies can promote earlier diagnosis by enabling simultaneous detection of biomarkers of multiple cancers early on, as well as information on cancer type and tissue of origin
- Multiple MCED tests have been/are being developed and have shown promise in clinical trial investigations
- Although no MCED tests are currently FDA approved, one test has recently been made available via CLIA approval
- MCED tests have the potential for routine application in primary care and may help reduce barriers to effective population-scale cancer screening

