HOSPITAL MEDICINE

Taking the Kidneys to Heart: Managing CKD-Related Anemia With Emerging HIF-PHIs

This CME activity is provided by Integrity Continuing Education, Inc. This CNE/ACPE activity is jointly provided by Global Education Group and Integrity Continuing Education, Inc.

- Clarify the disease burden imposed by untreated or undertreated anemia in patients with chronic kidney disease (CKD), including in racially diverse populations
- Correlate the pathophysiology of anemia in CKD with viable therapeutic targets
- Identify appropriate candidates for emerging CKD-related anemia treatments among patients on or not on dialysis based on efficacy and safety data from recent clinical trials

HOSPITAL MEDICINE

Overview of Anemia in CKD

Prevalence of CKD in the US

- Over 15% of US adults are estimated to have CKD
- Up to 90% are undiagnosed
- ~40% of those with severe
 CKD are undiagnosed

CDC. Chronic kidney disease in the United States, 2021. Available at: https://www.cdc.gov/kidneydisease/pdf/Chronic-Kidney-Disease-in-the-US-2021-h.pdf; USRDS. 2021 annual data report. Available at: https://adr.usrds.org/2021

Prevalence of Anemia in CKD

Retrospective Analysis of Hgb Levels in Patients With CKD*

Baseline CKD Stage

*CKD definition: ≥2 eGFR measurements of <60 mL/min/1.73 m² ≥90d apart. eGFR, estimated glomerular filtration rate; Hgb, hemoglobin; NDD, non-dialysis dependent. Stauffer ME, Fan T. *PloS one*. 2014;9:e84943; Wittbrodt ET, et al. *Clin Kidney J*. 2022;15:244-252.

- Anemia is 2.5 times more likely to occur in patients with CKD vs those without CKD
- 23.3% of patients with NDD-CKD stage 3a-5 had anemia (Hgb <10 g/dL)
- Anemia prevalence increased with CKD stage from 18.2% (stage 3a) to 72.8% (stage 5)

Burden of Anemia in CKD

Well-being

FACT-An, Functional Assessment of Cancer Therapy – Anemia; FACT-G, Functional Assessment of Cancer Therapy – General. Michalopoulos SN, et al. *Kidney Med*. 2022;4:100439.

6

Work Productivity

Impact of Anemia on the Risk for Hospitalization Among Patients With CKD

Lower Hgb is associated with higher risk of hospitalization¹:

Patient Population	Hgb Level	Risk for Hospitalization HR (95% CI)
NDD-CKD	Hgb < 10 g/dL	1.46 (1.02–2.09)
DD-CKD	Hgb 10–12 g/dL Hgb >12 g/dL	1.09 (1.07–1.11) 0.91 (0.87–0.96),

- In patients on dialysis, overall risk for hospitalization decreases with increasing Hgb (HR per 1 g/dL increase in Hgb, 0.92; 95% CI, 0.87–0.98)¹
- Severe anemia is associated with increased hospital LOS [mean 6.4 (SD 6.0) days vs mean 4.5 (SD 4.0) days; P <.001]²

CI, confidence interval; HR, hazard ratio; LOS, length of stay; SD, standard deviation. 1. Palaka E, et al. *Int J Nephrol*. 2020:7692376. 2. Garlo K, et al. *Medicine*. 2015;94:e964.

Impact of CKD-related Anemia on Long-term Health Outcomes

HF, heart failure; HK, hyperkalemia; HRQOL, health-related quality of life. Babitt JL, et al. *Kidney Int*. 2021;99:1280-1295; Garlo K, et al. Medicine (Baltimore). 2015;94:e964; Stauffer ME, Fan T. *PloS one*. 2014;9:e84943; Wittbrodt ET, et al. *Clin Kidney J*. 2021;15:244-252.

Symptoms and Impact of CKD-related Anemia*

Symptoms of Anemia in CKD

- Very tired
- Low energy
- Weak
- Chest pain
- Shortness of breath during activity
- Shortness of breath during rest
- Bruised skin
- Difficulty remembering things

Impact of Anemia in CKD

- Difficulty standing for long periods
- Difficulty sleeping
- Lack of motivation
- Need for frequent breaks
- Need for frequent naps
- Feeling distressed
- Feeling burdensome

*Conceptual framework used in the CKD-AQ questionnaire, a PRO measure for evaluation of CKD-related anemia. CKD-AQ, Chronic Kidney Disease and Anemia Questionnaire; PRO, patient reported outcome. Mathias SD, et al. *J Patient Rep Outcomes*. 2020;4:64.

Associations Between Risks for CKD and CKD-Related Anemia and Race/Ethnicity

CKD-related risk among Black, Hispanic, and American Indian individuals vs members of other race/ethnicity groups:

Kidney Disease

 Greater risk (likely due to high rates of diabetes and HTN)

Kidney Failure

- Greater risk
 - Black vs White:4X greater
 - Hispanic vs
 non-Hispanic:
 - 1.3X greater
 - American Indian vsWhite: 1.2X greater

ESKD Treatment

- Black patients less likely to receive transplant and home dialysis
- Treatment disparities most pronounced in 22–44YOs

CKD-related Anemia 2.4–3.7X more likely in non-Hispanic Black individuals vs members of other race groups

ESKD, end-stage kidney disease; HTN, hypertension; YO, year old. St. Peter WL, et al. *BMC Nephrology*. 2018;19:67; Unruh ML, et al. *BMC Nephrology*. 2020;21:291; USRDS 2021. Available at: https://adr.usrds.org/2021; USRDS 2016. Available at: https://www.niddk.nih.gov/health-information/kidney-disease/race-ethnicity; Wilk AS, et al. *Am J Kidney Dis*. 2022;80:9-19.

HOSPITAL MEDICINE

Management of Anemia in Patients With CKD

Pathophysiology of CKD-Related Anemia and Current **Treatment Options**

12

KDIGO Guidelines for Diagnosis and Evaluation of Anemia in Patients With CKD

Recommended investigations:

- Complete blood count (CBC)
- Absolute reticulocyte count
- Ferritin
- Transferrin saturation (TSAT)
- Vitamin B12 (some cases)
- Folic acid (some cases)

Address correctable causes of anemia (eg, iron deficiency and inflammatory states) prior to initiation of ESA therapy

Diagnosis of anemia in CKD

>15YO:

- Hgb <13 g/dL (Males)
- Hgb <12 g/dL (Females)

<15YO:

- Hgb <11 g/dL (0.5-5YO)
- Hgb <11.5 g/dL (5-12YO)
- Hgb <12 g/dL (12-15YO)

Administer intravenous iron if oral iron is not tolerated or is ineffective

KDIGO. Anemia in CKD: visual guidelines. Available at: http://www.treatalgo.com/kdigo-anemia/index.html

Standard of Care Therapy Challenges and Considerations

	ESAs	Iron Supplementation
Efficacy	 Stimulate RBC production & raise Hgb ~10% rate of hyporesponsiveness/resistance 	• Raise Hgb
Dosing & administration challenges	 Parenteral administration Lowest dose needed to reduce RBC transfusion requirements vs a specific target Hgb 	 Oral administration: Poor absorption, adherence challenges, GI AEs IV administration: Better tolerability with larger doses
Safety concerns	• CV risk at higher doses	 Potential for iron overload and risk for organ dysfunction, infection, worse CKD-associated inflammation Risk for anaphylactic reactions (rare)
Other	 Cold storage, expense, neutralizing anti-EPO antibodies 	 Need for IV access & transfusion clinic

Safety Concerns Associated With ESA Administration

Study	Normal Hematocrit Study (NHS) (N=1265)	CHOIR (N=1432)	TREAT (N=4038)	
Time period	1993 to 1996	2003 to 2006	2004 to 2009	
Patient population	 DD-CKD CHF or CAD Hematocrit 30±3% on epoetin alfa 	 NDD-CKD Hgb <11 g/dL Not previously on epoetin 	• NDD-CKD • T2DM • Hgb ≤11 g/dL	
Hgb target: higher vs lower (g/dL)	14.0 vs 10.0	13.5 vs 11.3	13.0 vs ≥9.0	
Median (Q1, Q3) achieved Hgb (g/dL)	12.6 (11.6, 13.3) vs 10.3 (10.0, 10.7)	13.0 (12.2, 13.4) vs 11.4 (11.1, 11.6)	12.5 (12.0, 12.8) vs 10.6 (9.9, 11.3)	
Primary endpoint	All-cause mortality or nonfatal MI	All-cause mortality, MI, hospitalization for CHF, stroke	All-cause mortality, MI, myocardial ischemia, HF, stroke	
HR or RR (95% CI)	<mark>1.28 (1.06 – 1.56)</mark>	<mark>1.34 (1.03 – 1.74)</mark>	<mark>1.05 (0.94 – 1.17)</mark>	
Adverse outcome for higher target group	All-cause mortality	All-cause mortality	Stroke	
HR or RR (95% CI)	<mark>1.27 (1.04 – 1.54)</mark>	<mark>1.48 (0.97 – 2.27)</mark>	<mark>1.92 (1.38 – 2.68)</mark>	

CAD, coronary artery disease; CHF, congestive heart failure; MI, myocardial infarction; RR, relative risk;

T2DM, type 2 diabetes mellitus.

FDA. Available at: <u>https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-modified-dosing-recommendations-improve-safe-use-erythropoiesis#table</u>

Shortcomings in Current Treatment Practices

Wong et al. 2020

- Prospective cross-sectional analysis of data from nephrology clinics in 4 countries, including the US
- 6,766 patients with Stage 3–5 CKD

Wittbrodt et al. 2021

- US retrospective claims analysis
- 22,720 patients with CKD stage 3a-5 and related anemia

Study findings:

- Hgb measured less often than recommended by guidelines
- Anemia <u>rarely</u> treated to guideline-recommended target (10–12 g/dL)

Study findings:

- <0.1% of patients with CKD-related anemia received IV iron supplementation
- Only 1.9% treated with ESAs

Wong MMY, et al. *Clin Kidney J.* 2020;13:613-624; Wittbrodt ET, et al. *Clin Kidney J.* 2021;15:244-252.

Impact of Inadequately Treated Anemia on Health Outcomes in Patients With CKD

ACS, acute coronary syndrome; BL, baseline; ED, emergency department. Wittbrodt ET, et al. *Clin Kidney J.* 2022;15:244-252.

Current Barriers to Adequate Treatment of CKD-Related Anemia

- The vast majority of patients with CKD-related anemia are not treated with IV iron and ESAs despite high prevalence, incidence, and persistence
- Previously identified barriers include the following:

HOSPITAL MEDICINE

Treatment of Anemia in CKD Emerging Therapies: HIF-PHIs

Regulation of Oxygen Homeostasis and the Effects of HIF-PHIs

Hypoxia-inducible factors (HIFs):

- Function as master regulators of oxygen homeostasis via transcription of genes involved in regulating tissue oxygen balance
- Increase EPO production in the kidney and liver, enhance iron uptake and utilization, and adjust the bone marrow microenvironment to facilitate erythroid progenitor maturation and proliferation

HIF prolyl hydroxylase (**HIF-PH**) is an enzyme that catalyzes hydroxylation of HIF leading to its proteasomal degradation

HIF-PH inhibitors (**HIF-PHIs**) stabilize HIFs, allowing them to act on downstream target genes to restore oxygen homeostasis

Mechanism of Action of HIF-PHIs for Anemia in CKD

Haase VH. Kidney Int Suppl. 2021;11:8-25.

Current Status of Emerging HIF-PHIs

	FDA Status	Phase 3 Clinical Trials	
Daprodustat	Decision pending (NDA submitted Apr 2022; decision expected Feb 2023)	ASCEND-D ASCEND-ND ASCEND-ID	ASCEND-TD ASCEND-NHQ
Vadadustat	Rejected Mar 2022	INNO ₂ VATE INNO ₂ VATE-CONVERSION	PRO ₂ TECT PRO ₂ TECT-CORRECTION
Roxadustat	Rejected Aug 2021	OLYMPUS ANDES ALPS	HIMALAYAS SIERRAS ROCKIES

Akebia. Available at: https://ir.akebia.com/news-releases/news-release-details/ akebia-therapeutics-receives-complete-response-letter-fda; Fibrogen. Available at: https://investor.fibrogen.com/news-releases/news-release-details/fibrogen-receives-complete-response-letter-fdaroxadustat-anemia; GSK. Available at: https://www.fibrogen.com/ roxadustat-trials; https://www.gsk.com/en-gb/media/press-releases/gskannounces-update-on-us-fda-regulatory-review-of-daprodustat-in-anaemia-of-chronic-kidney-disease/

Efficacy and Safety of HIF-PHIs in RCTs: Overview

	In DD-CKD & NDD-CKD				CV Safety Noninferior to ESAs	
Agent	Increase Hgb	Noninferior to ESAs	Reduce Need for RBC Transfusion	AEs Comparable to PBO/ESA	DD-CKD	NDD-CKD
Daprodustat	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark
Vadadustat	✓	\checkmark	~	✓	\checkmark	_
Roxadustat	✓	\checkmark	✓	✓	_	_

PBO, placebo.

Chertow GM, et al. *N Engl J Med*. 2021;384:1589-1600; Eckardt KU, et al. *N Engl J Med*. 2021;384:1601-1612; Fishbane S, et al. *J Am Soc Nephrol*. 2021;32:737-755; Fishbane S, et al. *J Am Soc Nephrol*. 2022;33:850-866; Singh AK, et al. *N Engl J Med*. 2021;385:2313-2324; Singh AK, et al. *N Engl J Med*. 2021;385:2325-2335.

Daprodustat for the Treatment of CKD-Related Anemia

Hemoglobin Level (g/dL)

 Darbepoetin alfa - Daprodustat 12.0 Evaluation period 11.5 Hemoglobin Level (g/dL) 11.0 10.5 10.0 9.5 9.0 0.0 Screening with NY A 14-0-W 28 14 AO NT 10 17-00 14 222 NY 22A WH 230 MY LAS 1452 14 60 114 200 Endotrial Following Day Visit

Hgb change from baseline to Wks 28–52 was 0.74±0.02 g/dL with daprodustat vs 0.66±0.02 g/dL with darbepoetin alfa (difference, 0.08 g/dL; 95% CI, 0.03 to 0.13), meeting the prespecified noninferiority margin 12.0 Evaluation period 11.5 11.0 10.5 10.0 9.5 9.0 0.0 Scieeningwith 14 10-9 NH AO 14 200 L NY A MASS NYCA WY TO MH 200 N# 100 MA 122 Oat Mr 2A MH 136 WH LAS End of trial Follow-UP Visit

ASCEND-D

-- ESA

Daprodustat

Hgb change from baseline to Wks 28–52 was 0.28±0.02 g/dL with daprodustat and 0.10±0.02 g/dL with ESA (difference, 0.18 g/dL; 95% CI, 0.12 to 0.24), meeting the prespecified noninferiority margin

Singh AK, et al. *N Engl J Med*. 2021;385:2313-2324; Singh AK, et al. *N Engl J Med*. 2021;385:2325-2335.

ASCEND-ND

ASCEND-ND: MACE and CKD Progression

During a median follow-up of 1.9 years, a first MACE occurred in 19.5% of daprodustat-treated patients vs 19.2% in darbepoetin alfa-treated patients (HR, 1.03; 95% CI, 0.89 to 1.19), meeting the prespecified noninferiority margin.

CKD Progression

MACE, major adverse cardiovascular event. Singh AK, et al. *N Engl J Med.* 2021;385:2313-2324.

ASCEND-D: MACE

During a median follow-up of 2.5 years, a MACE occurred in 25.2% of daprodustat-treated patients vs 26.7% in ESA-treated patients (HR, 0.93; 95% CI, 0.81 to 1.07), meeting the prespecified noninferiority margin.

Singh AK, et al. N Engl J Med. 2021;385:2325-2335.

Roxadustat for the Treatment of CKD-Related Anemia

**P* <.001 for both; [†]*P* <.001; [‡]HR, 0.37; 95% CI, 0.30 to 0.44. Fishbane S, et al. *J Am Soc Nephrol*. 2021;32:737-755; Fishbane S, et al. *J Am Soc Nephrol*. 2022;33:850-866.

Roxadustat vs PBO in NDD-CKD:

- Increased Hgb from baseline (+11.35 g/dl WK 28 to WK 52)⁺
- Reduced risk for transfusion by 63%[‡]
- Similar AE profile

Roxadustat vs epoetin alfa in DD-CKD:

- Noninferior correction & maintenance of Hgb
- Noninferior CV safety
- Similar AE profile

Roxadustat Safety

NDD-CKD

AE Summary (ITT Analysis Set)

AE Category	Roxadustat (n=1348) %	PBO (n=1377) %
Any AE:	89.8	88.3
With an outcome of death	18.9	15.5
In the cardiac disorders SOC	22.8	21.3
Any SAE (including events with an outcome of death)	57.4	54.4
In the cardiac disorders SOC	12.6	11.4
All-cause mortality	20.5	17.8

DD-CKD (ROCKIES)

AE Summary

	Roxadustat (n=1048)	Epoetin Alfa (n=1053)
AE Category	%	%
Any AE:	85.0	84.5
Leading to discontinuation	5.4	2.5
Leading to interruption	9.3	4.2
Leading to an outcome of death	15.9	17.8
In the cardiac disorders SOC	23.4	26.3
Any SAE (including event with an	57.6	57.5
outcome of death)	14.6	16.0
In the cardiac disorders SOC		

Vadadustat for the Treatment of CKD-Related Anemia

Vadadustat vs DA in NDD-CKD

- Noninferior for hematologic efficacy
- Did <u>not</u> meet noninferiority for MACE

Incident DD-CKD Trial

Prevalent DD-CKD Trial

Vadadustat vs DA in DD-CKD

- Noninferior for hematologic efficacy
- MACE: HR=0.96 (95% Cl, 0.83 - 1.11)
- Expanded MACE: HR=0.96 (95% CI, 0.84 – 1.10)

Chertow GM, et al. N Engl J Med. 2021;384:1589-1600; Eckardt KU, et al. N Engl J Med. 2021;384:1601-1612.

Shared Decision-making

- Shared decision-making (SDM) enables patient to actively participate in their own care
- Specific strategies can facilitate more effective SDM:

Promote effective communication

- Encourage patients to engage in open clinician-patient dialogue
- Provide information specific to anemia to facilitate the dialogue

Describe treatment options

- Explain rationale for treatment selection
- Outline advantages and disadvantages
- Explain potential effects on lifestyle and how they might align/conflict with personal values
- Assess patient preferences

Make decisions collaboratively

• Ensure both you and the patient are comfortable with the choice of treatment

Discharge Planning

Patient & caregiver education

- Nutritional guidance (regarding salt, potassium, protein, phosphorus, and fluid intake)
- Managing fatigue
- Obtaining adequate sleep
- Monitoring weight
- Managing HTN, diabetes

Medications

- Medication reconciliation
- Confirm access to prescribed medications

Medical care

- Schedule early nephrology care follow-up
- Review when to seek prompt medical care

HOSPITAL MEDICINE

Case Study Assessments

Case 1: Patient Description

A 68-year-old Black woman with history of Stage 4 CKD, HTN, and overweight presents to the ED for weakness and shortness of breath over the past 5 days. She reports that she has felt increasingly fatigued over the past six months and had increasing dyspnea on exertion. Her current medications include an ACEi and thiazide diuretic.

Case 1: Physical Exam

Physical Exam Findings		
BP	140/70	
Pulse	82	
Respiratory rate	20	
Fever	Νο	
Body weight	150 lbs	
BMI	27 kg/m ²	
Edema	Νο	

BMI, body mass index; BP, blood pressure.

Case Patient 1: Laboratory Findings

Chemistry	Result	Reference Range	Urinalysis
Hgb	9.5 gm/dL	14-17 gm/dL	
Sodium	WNL	136-146 mmol/L	
Potassium	5.4 mmol/L	3.5-5.3 mmol/L	
Phosphorus	6.5 mg/dL	2.6-6.4 mg/dL	
Chloride	WNL	98-108 mmol/L	pH: 6 Specific gravity: 1010
Total CO ₂	20 mmol/L	23-27 mmol/L	Protein: 1+
BUN	63 mg/dL	7-22 mg/dL	Glucose: Neg
Creatinine	3.7 mg/dL	0.7-1.5 mg/dL	Acetone: Neg
eGFR	Low	>60 mL/min/1.73m ²	Occult blood: Neg
Glucose	105 mg/dL	70-110 mg/dL	Bile: Neg
HbA1c	5.7%	<5.7%	UACK : 0.8g/g creatinine
Hematocrit	27%	40-54 %	
Mean cell volume	WNL	85-95 FL	
Transferrin saturation	24%	20-50%	
Serum ferritin	120 ng/mL	12-263 ng/mL	

BUN, blood urea nitrogen; uACR, urine albumin to creatinine ratio; WNL, within normal limits.

HOSPITAL MEDICINE

35

Case Discussion Question

How would you characterize this patient's level of risk for adverse outcomes?

- A. High
- B. Low
- C. Moderate

Case Discussion Question

What type of treatment would you prescribe for this patient?

- A. Iron supplementation
- B. ESA therapy
- C. HIF stabilizer therapy
- D. Transfusion

A 61-year-old Hispanic man with history of Stage 5 CKD, HTN, hyperlipidemia, and T2DM is brought to the ED by his family for fatigue, shortness of breath, and generalized weakness over the past 3 days. His current treatment regimen includes an ACEi, statin, DPP4i, epoetin alfa, iron sucrose, and maintenance hemodialysis.

Case 2: Physical Exam

Physical Exam Findings		
BP (predialysis)	145/90	
Pulse	75	
Respiratory rate	18	
Fever	No	
Body weight	170 lbs	
BMI	29 kg/m ²	
Edema	1+ lower extremity	

Case Patient 2: Laboratory Findings

Chemistry	Result	Reference Range
Hgb	9.2 gm/dL	14-17 gm/dL
Sodium	WNL	136-146 mmol/L
Potassium	5.0	3.5-5.3 mmol/L
Phosphorus	5.4	2.6-6.4 mg/dL
Chloride	WNL	98-108 mmol/L
Total CO ₂	24	23-27 mmol/L
BUN	74	7-22 mg/dL
Creatinine	9.65	0.7-1.5 mg/dL
Glucose	95 mg/dL	70-110 mg/dL
HbA1c	7.0%	<5.7%
Hematocrit	WNL	40-54 %
Mean cell volume	60 85-95 FL	
Transferrin saturation	25% 20-50%	
Serum ferritin	840 ng/mL 12-263 ng/mL	

Case Discussion Question

What is the most likely cause of the patient's persistent anemia despite ESA therapy?

- A. Hyporesponsiveness to EPO
- B. Inflammatory process
- C. Iron deficiency

Case Discussion Question

What changes would you make to the patient's current treatment regimen?

- A. Increase iron supplementation
- B. Increase ESA dose
- C. Switch to an HIF stabilizer therapy
- D. Transfusion

Key Points

- Anemia is a common complication of CKD that exerts a significant negative impact on patient well-being, work productivity, and HRQOL
- Patients with CKD-related anemia are at greater risk for poor health outcomes such as volume overload, and increased hospitalization and mortality
- CKD-related risk is increased among Black, Hispanic, and American Indian individuals, and Black patients are more likely to have CKD-related anemia
- Better understanding of the pathophysiology of CKD-related anemia has led to the development of HIF-PHIs, which exert their therapeutic effects via stimulation of endogenous EPO production
- In clinical trials, HIF-PHIs have consistently been shown to be noninferior to conventional ESAs for Hgb efficacy in both DD-CKD and NDD-CKD
- In terms of safety, disparate outcomes (including risk for MACE) have been reported for roxadustat, vadadustat, and daprodustat; studies to better characterize the safety of each are currently ongoing

Clinical Pearls

 Maintain a high index of suspicion and apply recommended diagnostic criteria to identify anemia in all patients with CKD

Adults & children >15YO	<13 g/dL in males <12 g/dl in females
Children <15YO	<11 g/dl (0.5-5YO) <11.5 g/dl (5-12YO) <12 g/dl (12-15YO)

- Evaluate anemia using appropriate assessments (eg, CBC, absolute, reticulocyte count, ferritin, TSAT) and treat promptly if needed
- Address all correctable causes of anemia (including iron deficiency and inflammatory states) prior to initiation of ESA therapy
- Administer intravenous iron if oral iron is not tolerated or is ineffective
- Individualize selection of treatment for anemia taking into account patient characteristics including cardiovascular risk

HOSPITAL MEDICINE

Thank you!

