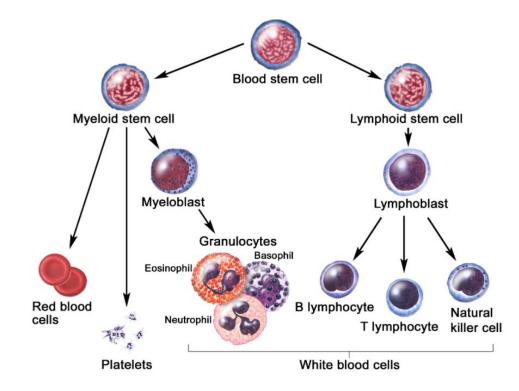
Cracking the Code: Exploring Novel Frontline Treatments and Prospects for Maintenance Therapy for AML

Provided by Integrity Continuing Education, Inc. Supported by an educational grant from Astellas and Bristol-Myers Squibb

About These Slides

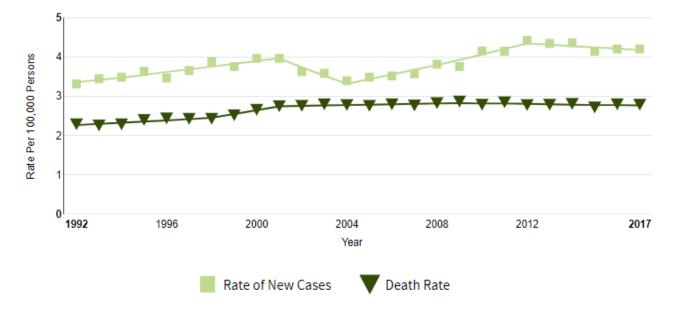
- Please feel free to use and/or modify these slides in your noncommercial educational efforts
- When using these slides, please retain the source attribution:
 - Slide credit: INTEGRIT
- Integrity Continuing Education, Inc designates this enduring material for a maximum of 0.5 AMA PRA Category 1 Credit(s)[™]. However, use of these slides outside of the ICE websites does not provide this credit
- These slides may not be published, posted online, or used in commercial presentations without permission.
 Please contact 855-835-4004 or <u>cme@integrityce.com</u> for details
- Disclaimer: The opinions expressed in this educational activity are those of the faculty and do not necessarily represent the views of any organization associated with this activity. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications, and warnings


Learning Objectives

- Correlate disease pathophysiology, cytogenetic, and molecular characteristics with targeted agents to individualize treatment of patients with acute myeloid leukemia (AML)
- Evaluate recent changes to the standard treatment paradigm for newly diagnosed and relapsed/refractory patients with AML
- Analyze data supporting best practice use of maintenance therapy
- Evaluate methods for measuring minimal residual disease (MRD) after complete remission to determine risk of relapse

Overview of AML: Epidemiology, Etiology, and Risk Factors

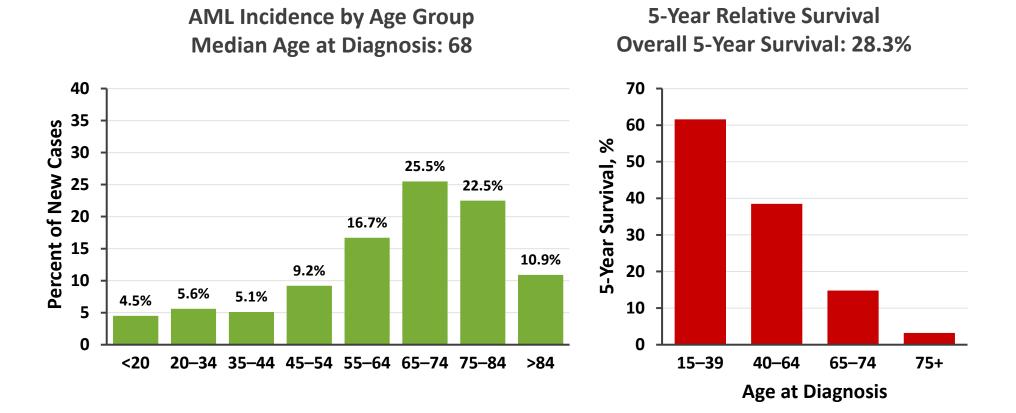
Blood: Normal vs Abnormal Differentiation


Normal Platelets RBC's WBC's Plasma(fluid) Blast cells

Normal blood cell development: stem cells differentiate through several steps to become a red blood cell, platelet, or white blood cell.¹ In AML, immature, abnormal blast cells proliferate to crowd out healthy red and white blood cells and other blood components.²

AML By the Numbers: Epidemiology

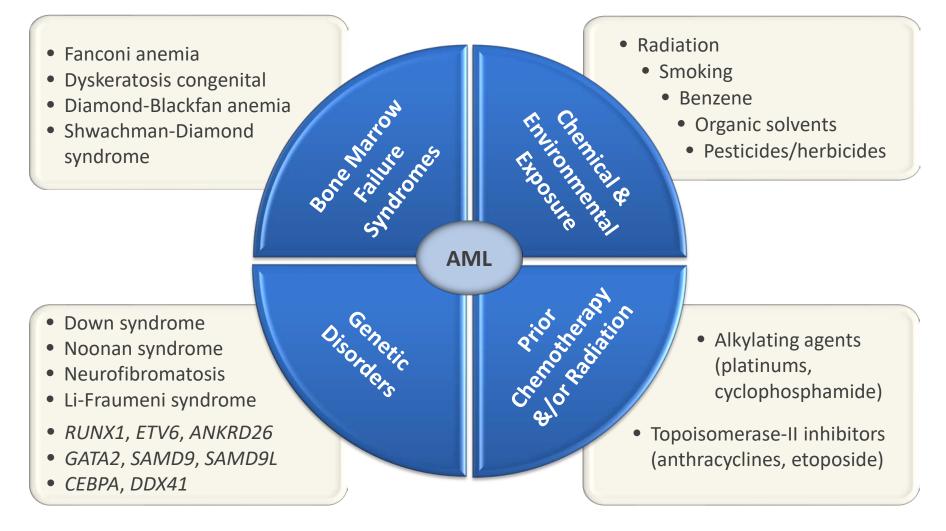
- Lifetime AML risk: ~0.5%
- AML represents 1.1% of all new cancer cases in the US and 1.8% of cancer deaths
 - Incidence in 2020: ~19,940
 - Mortality in 2020: ~11,180

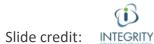


 \bigcirc

INTEGRITY

Slide credit:


AML Incidence and Survival

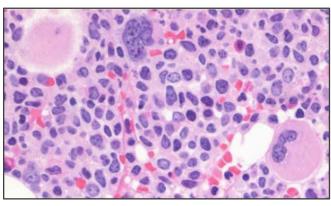


Slide credit: INTEGRITY

SEER 2020: https://seer.cancer.gov/statfacts/html/amyl.html

Risk Factors and Etiologies

Arber DA, et al. Blood. 2016;127:2391-2405. Tamamyan G, et al. Crit Rev Oncol Hematol. 2017;110:20-34.

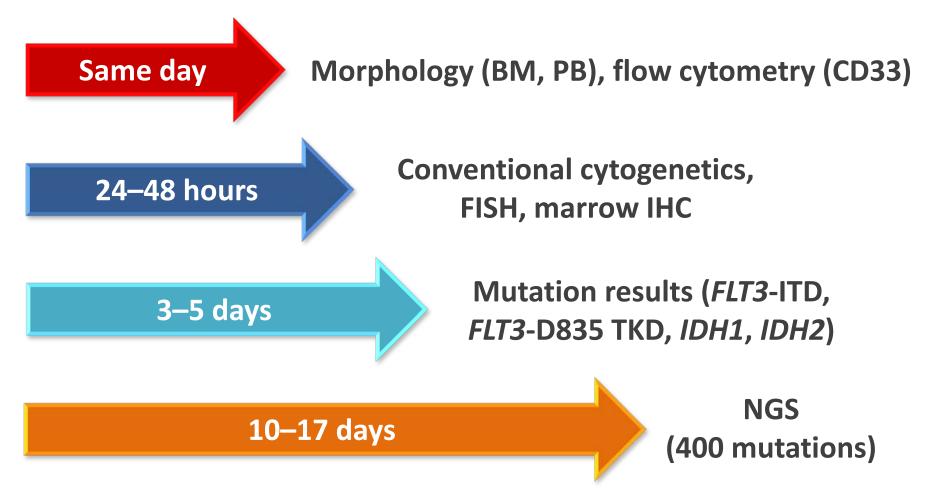


Diagnosis, Assessment, and Prognostic Risk Stratification

Diagnostic Criteria for AML

- ≥20% myeloid blasts of 500 cells (BM and/or PB)
- Evidence of myeloid origin + MPO, NSE, or BE

Stage/Lineage	Marker Expression
Precursors*	CD34, CD117, HLA-DR
Granulocytic	CD13, CD33, MPO
Monocytic	CD11c, CD14, CD36, CD64
Megakaryocytic	CD41 (gp IIb/IIIa), CD61 (gp IIIa)
Erythroid	CD235a (glycophorin A)



Blasts seen in BM biopsy. Image courtesy of Reva Channah Goldberg, ASH Image Bank.

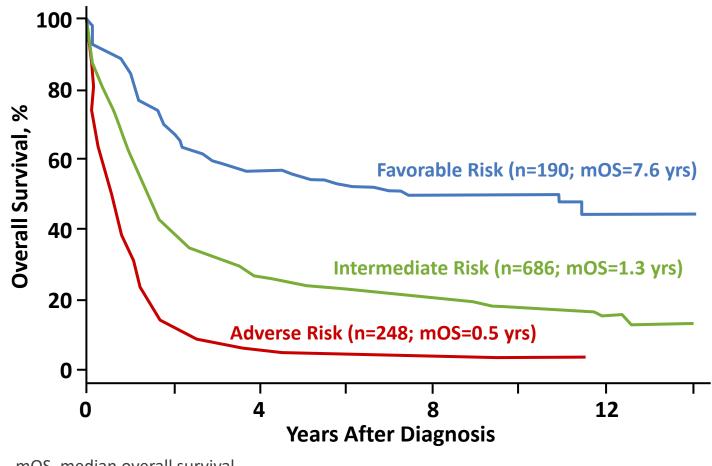
*Note that CD34 and HLA-DR are **negative** in APL.

APL, acute promyelocytic leukemia; ASH, American Society of Hematology; BE, butyrate esterase; BM, bone marrow; gp, glycoprotein; MPO, myeloperoxidase; NSE, nonspecific esterase; PB, peripheral blood.

Diagnostic Workup for AML

FISH, fluorescence in situ hybridization; FLT3-ITD, fms-related tyrosine kinase 3-internal tandem duplication; IDH, isocitrate dehydrogenase; IHC, immunohistochemistry; NGS, next-generation sequencing; TKD, tyrosine kinase domain.

Assessing Prognosis in AML


- Historic prognostic factors in AML
 - Age: Remission rates inversely related to age
 - \geq 65% for younger than 60
 - 5-year survival \leq 13% if older than 60¹
 - Performance status: Karnofsky and ECOG most common
 - Performance and age at diagnosis combined to estimate % of patients who will die within first 28 days of treatment²
 - Cytogenetics: Strongest prognostic information to predict outcome of induction and consolidation/post-remission treatment³

ECOG, Eastern Cooperative Oncology Group.

Assessing Prognosis in AML

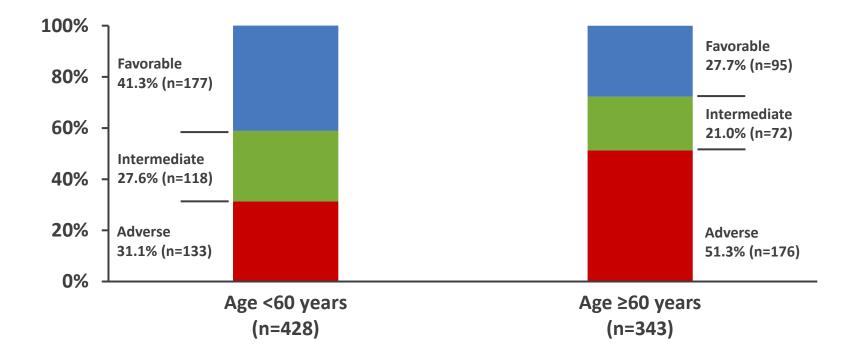
Based on cytogenetic/molecular analysis, patients can be divided into having *favorable*, *intermediate*, or *adverse* risk

2017 ELN Risk Stratification by Cytogenetics

Risk Category	Genetic Abnormality	
Favorable	t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i> inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i> Mutated <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -ITD ^{low} Biallelic mutated <i>CEBPA</i>	
Intermediate (Not classified as favorable or adverse)	Mutated NPM1 and FLT3-ITD ^{high} Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); MLLT3-KMT2A	
Adverse	t(6;9)(p23;q34.1); <i>DEK-NUP214</i> t(v;11q23.3); <i>KMT2A</i> rearranged t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i> inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2, MECOM(EVI1)</i> -5 or del(5q); -7; -17/abn(17p) Complex karyotype, monosomal karyotype Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD ^{high} Mutated <i>RUNX1, ASXL1,</i> and/or <i>TP53</i>	

CBFB-MYH11, core binding-factor subunit beta-myosin heavy chain 11; ELN, European Leukemia-NET; TP53, tumor protein p53.

 (\mathbf{i})


Essential AML Prognostic Features

Trait	Favorable	Unfavorable
Age		✓ (particularly >65)
FLT3-ITD		\checkmark
TP53		\checkmark
RUNX1 and/or ASXL1		\checkmark
-5, -7, inv(3), complex cytogenetics		\checkmark
NPM1	\checkmark	
dmCEBPA (biallelic, dual mutant)	\checkmark	
t(15;17)	\checkmark	
Inv(16) or t(8;21)	\checkmark	
KIT mutation in inv(16) or t(8;21)		✓ (generally)

Red = unfavorable; Black = favorable. dmCEBPA, double mutated CEBPA.

Validation of ELN Risk Categories

Proportion of intensively treated patients in ELN 2017 risk categories* validation study

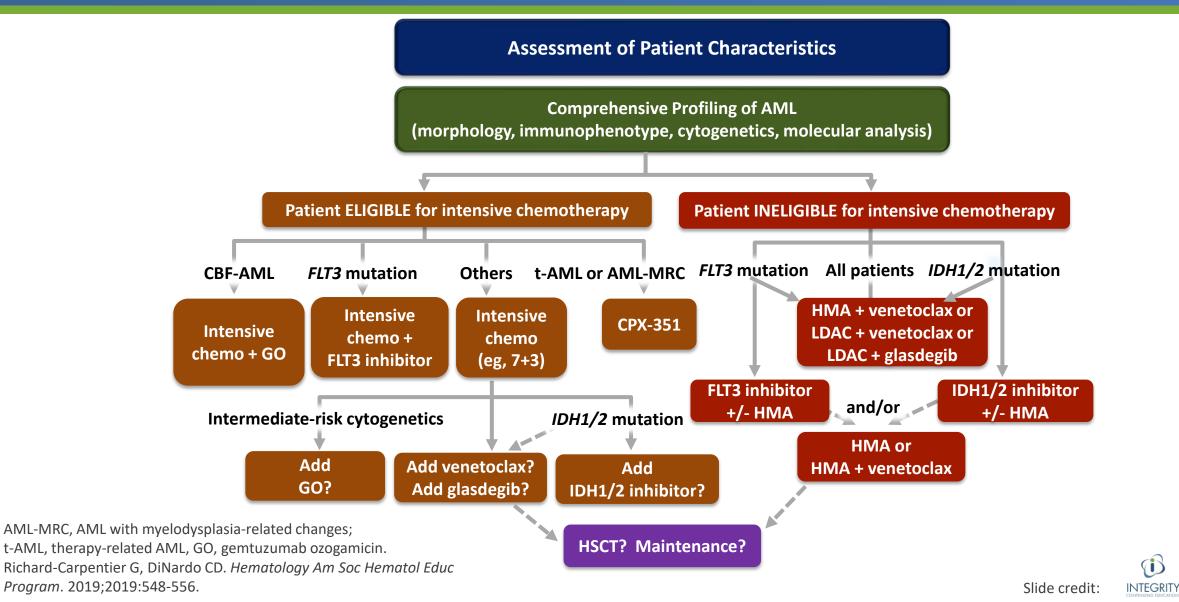
*Previous separation of intermediate risk into 2 divisions (Intermediate-I and Intermediate-II) was eliminated in the 2017 ELN update.

Adapted from: Herold T, et al. Leukemia. Mar 30, 2020. [Online ahead of print]

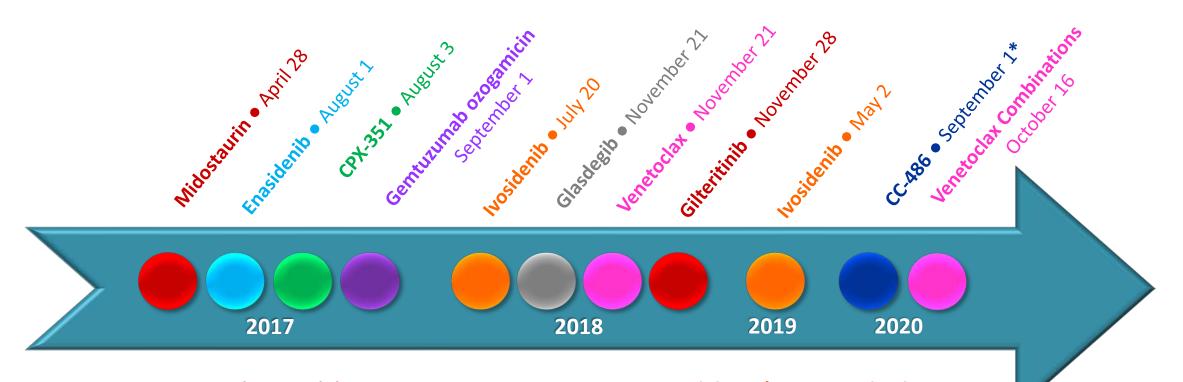
Review of Therapeutic Goals and New Treatment Approaches

Principles of AML Therapy

Evaluate eligibility for intensive	Consider age, performance status, comorbidities, cytogenetics/molecular genetics, patient's wishes		
chemotherapy			
	Young, fit patients	Older, less fit patients	
Goals of Therapy	Induce remission, treat with curative intent	Control disease progression, improve survival and QOL	
Treatment Strategies	Intensive reduction and consolidation treatment alloHSCT in patients with ≥40% risk of relapse	Lower-intensity treatment Clinical trials with investigational drugs Best supportive care	
	CR rate: ~75% in young patients 40%–50% in ages ≥60	CR rate: ~25% with HMA <10% with LDAC	


alloHSCT, allogeneic hematopoietic stem cell transplant; CR, complete remission; HMA, hypomethylating agent; LDAC, low-dose cytarabine; QOL, quality of life.

After 40 Years . . . 8 New Targeted Treatments


"Finally, after a prolonged wait [40 years], we are witnessing the next wave of AML treatment, characterized by a more precise and personalized understanding of the unique molecular or genetic mapping of individual patients. This trend has been further facilitated with 8 new FDA approvals granted since 2017." "Sylvia Park, et al, in Blood Research, 2020

Evolving Treatment Options for Newly Diagnosed AML

 $\langle \mathbf{i} \rangle$

Targeted Treatments Approval Timeline

Red: FLT3 inhibitors Light blue: IDH2 inhibitor Green: Liposome-encapsulated cytarabine + daunorubicin Purple: Anti-CD33 antibody drug conjugate Orange: IDH1 inhibitor (Note: ivosidenib approved for 2 indications) Gray: Hedgehog inhibitor Pink: BCL2 inhibitor Dark blue: DNA hypomethylator

*CC-486 is an oral formuation of azacytidine, approved as maintenance treatment. Richard-Carpentier G, DiNardo CD. *Am Soc Hematol Educ Program*. 2019;2019:548-556.

Novel/Targeted Agents

Class / Target	Agent	Indication	Route	Caution/Monitoring
BCL2	Venetoclax	Newly Dx AML in pts ≥75 yrs or pts w/ comorbidities unfit for intensive induction chemo	Oral	 Common AEs (in combination with azacitdine or decitabine): nausea, diarrhea, constipation, thrombocytopenia, neutropenia, FN, fatigue Monitor for: TLS
Cytotoxic	CPX-351*	Newly Dx t-AML or AML-MRC	IV	 Monitor for: blood counts for prolongation of blood count suppression Avoid in pts with decreased cardiac function
Cytotoxic ADC	Gemtuzumab ozogamicin	Newly Dx & R/R CD33+ AML	IV	Infusion-related reactionsMonitor platelet counts and signs of VOD
Cytotoxic DNMTi	CC-486†	Maintenance Tx in 1st CR or CRi	Oral	 Common AEs: GI effects including nausea, vomiting, diarrhea; thrombocytopenia

*CPX-351 is a liposomal version of cytarabine plus daunorubicin; [†]CC-486 is an oral formulation of injectable azacitidine with distinctly different pharmacokinetic and pharmacodynamic profile, enabling extended dosing to maximize hypomethylating effects. ADC, antibody drug conjugate; AEs, adverse events; CRi, complete remission with incomplete hematologic recovery; DNMTi, DNA methyltransferase inhibitor; FN, febrile neutropenia; GI, gastrointestinal; IV, intravenous; pts, patients; R/R, relapsed/refractory; TLS, tumor lysis syndrome; VOD, veno-occlusive disease.

Novel/Targeted Agents (cont)

Class / Target	Agent	Indication	Route	Caution/Monitoring
<i>FLT3-</i> ITD/TKD	Gilteritinib	R/R <i>FLT3</i> ^{mut} positive AML	Oral	 Common AEs: myalgias, elevated liver enzymes, dyspnea, edma, rash, pneumonia, nausea, hypotension, dizziness, vomiting
<i>FLT3-</i> ITD/TKD	Midostaurin	Newly Dx <i>FLT3</i> ^{mut} positive AML	Oral	Common AEs: GI eventsMonitor for: Potential drug-drug reactions
Hhp	Glasdegib	Newly Dx AML in pts ≥75 yrs or pts w/ comorbidities unfit for intensive induction chemo	Oral	 Common AEs: anemia, fatigue, hemorrhage, FN, MSK pain, nausea, edema, dyspnea, thrombocytopenia
IDH1	Ivosidenib	Newly Dx or R/R <i>IDH</i> ^{mut} positive pts ≥75 yrs or pts w/ comorbidities unfit for intensive induction chemo	Oral	 Monitor for: IDH differentiation syndrome, GI events, nausea, leukocytosis
IDH2	Enasidenib	R/R <i>IDH2</i> ^{mut} positive AML	Oral	• Monitor for: IDH differentiation syndrome, GI events, elevated bilirubin, leukocytosis

Hhp, hedgehog pathway; MSK, musculoskeletal.

DiNardo CD, Wei AH. *Blood.* 2020;135:85-96. Park S, Cho BS, Kim H-J. *Blood Res.* 2020;55:S14-S18.

Exploring the Role of Maintenance Therapy

Maintenance therapy: post-remission strategy to clear malignant cells left over after remission induction therapy

Exploration of maintenance therapy in AML ongoing since the 1960s

Goal: extend CR, reduce risk of relapse through lower-intensity treatment

Targeted agents with novel MOAs renews hope for effective maintenance treatment most notably with oral FLT3 inhibitors

MOAs, methods of action.

Quantifying and Evaluating MRD

Quantifying MRD important after CR to assess: 1) risk of relapse, 2) need for maintenance—but still controversial

Method	Target	Sensitivity	Pros/Cons
Cytogenetics	Chromosomal abnormalities	1 in 20 (5%)	Inexpensive, readily availableApplicable for ~50% of AML
Flow cytometry	Leukemia-associated aberrant immuno- phenotype	1 in 10,000 (0.01%)	 Applicable to most AML Relatively cheap Not easily standardized Subject to expertise and interpretation
RT-PCR	Fusion transcripts (CBFs), gene mutations (<i>NPM1</i>)	Up to 1 in 100,000 (0.001%)	 Highly sensitive Very standardized Applicable for ~30%–40% of AML
NGS (mutation analysis)	Gene mutations	Up to 1 in 10,000 (0.01%); typically ~1%	 Genetic heterogeneity and clonal architecture complicate analysis

CBFs, core binding factors; RT-PCR, reverse transcription polymerase chain reaction.

Frontline Treatment Strategies: Newly Diagnosed Younger, Older, and High-Risk, "Unfit" AML Patients

Initial Therapy for Patients Fit for Intensive, Potentially Curative Chemotherapy

- Patients with AML sensitive to conventional chemo
 - Younger patients: <65
 years without t-AML
 recurrent infections
 - CBF leukemia: 8;21and inv(16)
 - Diploid AML: with NPM1 or dmCEBPA

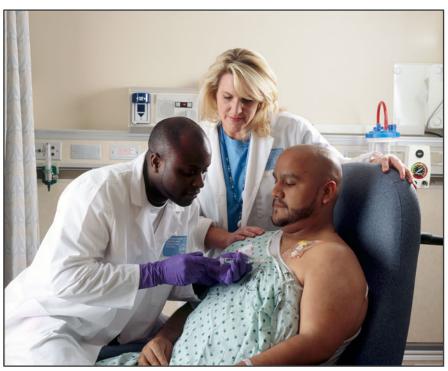
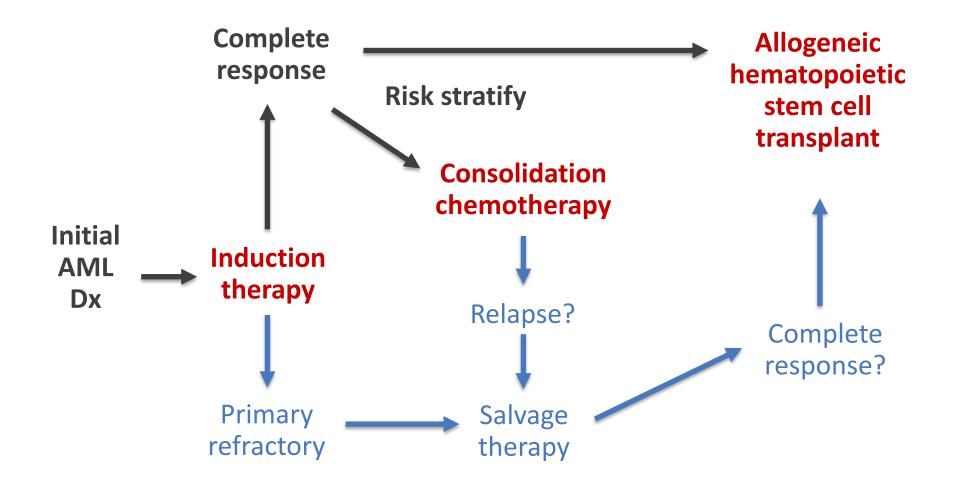



Image courtesy of Rhoda Baer. NCI Visuals Online.

dmCEBPA, double mutated; NCI, National Cancer Institute.

Paradigm for Initial Treatment

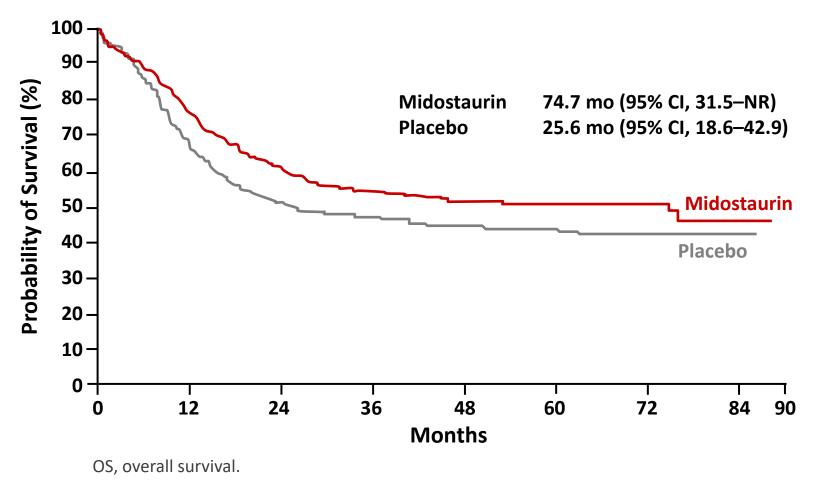
Slide credit: INTEGRITY

Adapted figure courtesy of Harry P. Erba, MD, PhD.

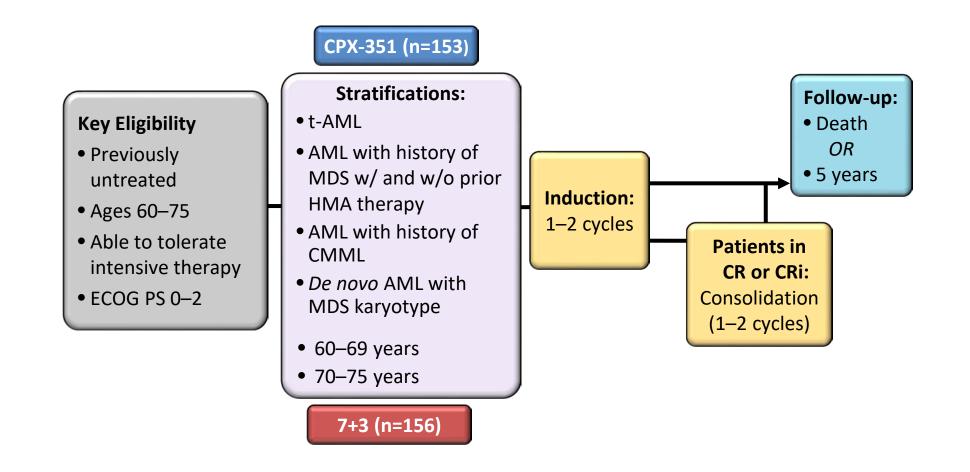
Chemotherapy Induction and Consolidation

"7+3" Induction

- Cytarabine 100–200 mg/m²
 x 7 days CIV
- Daunorubicin* 60–90
 mg/m² x 3 days or idarubicin
 12 mg/m² x 3 days


Consolidation

- HiDAC x 4 cycles
- alloHSCT if patient is high risk (or intermediate risk with appropriate donor)


*Note: daunorubicin 45 mg/m² is INFERIOR

R/R AML Treatment for FLT3-Positive Patients: Midostaurin

OS from phase 3 RATIFY trial of midostaurin + standard chemo vs chemo + placebo for *FLT3*-mutated AML (N=717)

Initial Therapy for Older Patients with Newly Diagnosed Secondary AML

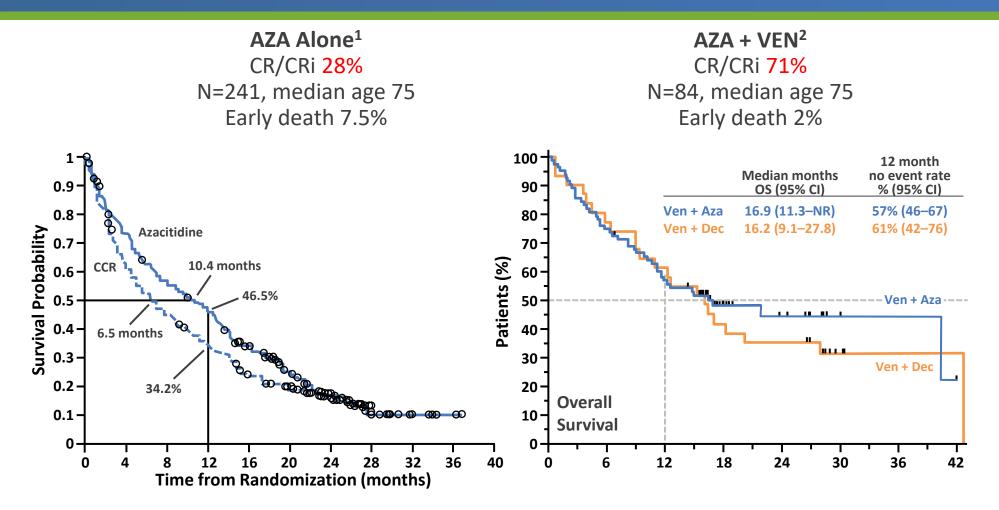


CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome.

Initial Therapy for Older Patients with Newly Diagnosed Secondary AML

CPX-351 is the new SOC in this population

Adapted from: Lancet JE, et al. J Clin Oncol. 2018;36:2684-2692.

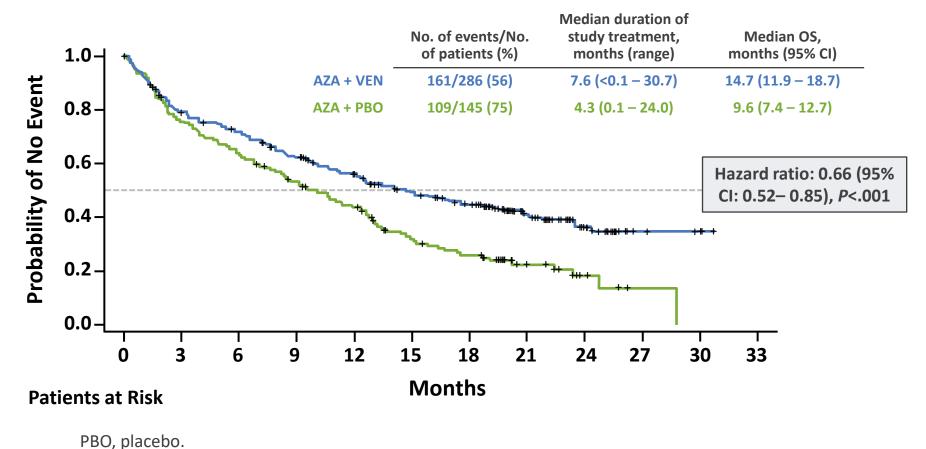

Initial Treatment: Newly Dx Patients NOT Fit for Intensive Chemotherapy

- Patients unfit for intensive chemo
 - ≥ 75 years
 - Poor performance status (ECOG PS ≥2)
 - Comorbidities (eg, pulmonary, cardiac, renal, hepatic)
- Best treatment options
 - BSC (hydrea, transfusions)
 - Lower-intensity therapy
 - HMA with azacitidine or decitabine
 - LDAC

BSC, best supportive care.

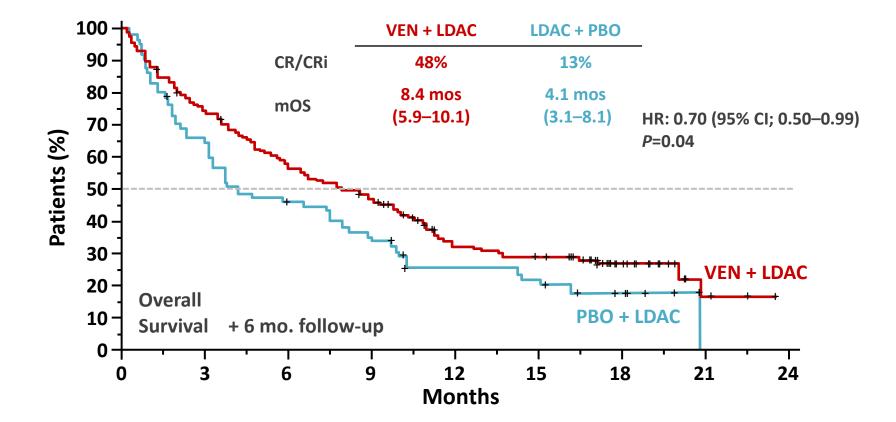
- Lower-intensity combinations (approved in 2018)
 - HMA or LDAC + ventoclax
 - LDAC + glasdegib
- Molecularly targeted therapy
 - Ivosidenib (patients with *IDH1* mutations)

Newly Dx "Unfit" AML: AZA +/- VEN


AZA, azacitidine; VEN, venetoclax.

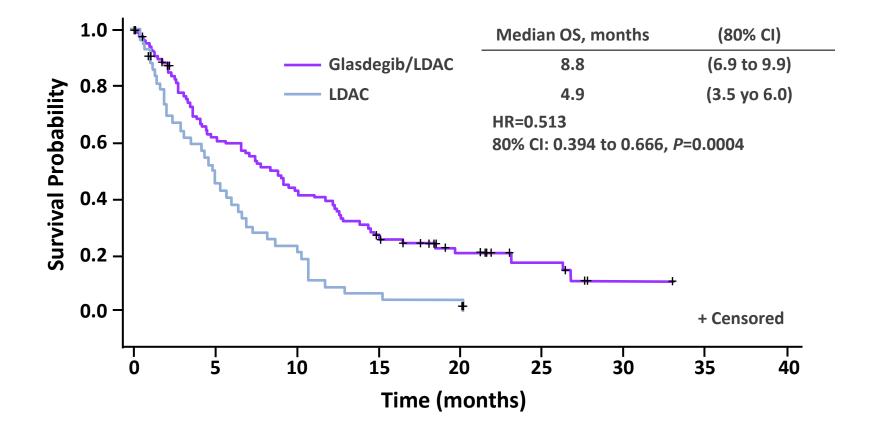
Adapted from: Dombret H, et al. *Blood.* 2015;126:291-299.
 Adapted from: DiNardo CD, et al. *Lancet Oncol.* 2018;19:216-228.

Newly Dx "Unfit" AML: AZA + VEN New SOC


AZA + VEN the new SOC for patients ≥75 not eligible for intensive chemotherapy — phase 3 VIALE-A trial

Adapted from: DiNardo CD, et al. N Engl J Med. 2020;383:617-629.

Newly Dx "Unfit" AML: LDAC +/- VEN


LDAC + VEN for patients ≥75 not eligible for intensive chemotherapy phase 3 VIALE-C trial

Adapted from: Wei AH, et al. *Blood*. 2020;135:2137-2145.

Newly Dx "Unfit" AML: LDAC + Glasdegib

OS from phase 2 randomized trial of LDAC +/- hedgehog inhibitor (N=132)

Treatment in Patients with "Targetable" Cytogenetic Mutations in Frontline and Relapse Settings

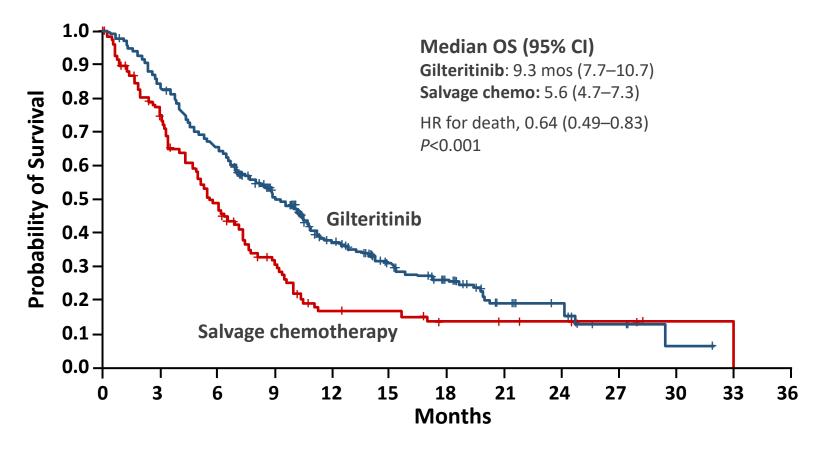
FLT3 and IDH Mutations in AML

*FLT3*¹

- FLT3 mutations common in AML
 - FLT3-ITD in ~25% of AML
 - FLT3-TKD in ~10% of AML
- *FLT3* mutations more frequent in younger patients, *de novo* AML, and diploid cytogenetics
- Leads to constitutive activation of *FLT3* receptor
- *FLT3*-ITD an independent predictor of poor prognosis

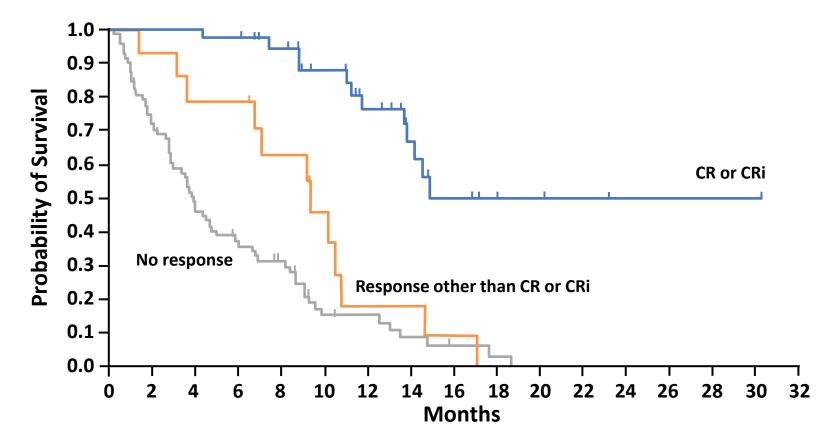
IDH1/IDH2²

- IDH mutations in ~20% of AML
 - IDH1 in ~8% ; IDH2 in ~12%
 - ~85% in *de novo* diploid or +8 AML
 - \uparrow prevalence with \uparrow patient age
- Hotspot mutations
 - *IDH1* R132, *IDH2* R140, *IDH2* R172
- *IDH* mutations can be acquired at disease progression
 - ~10%–15% of AML from MDS
 - ~20%–25% of AML from MPNs

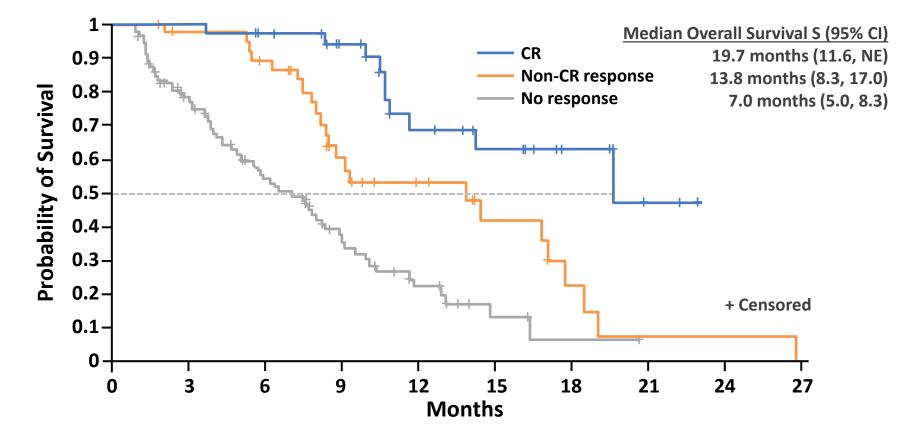

MPN, myeloproliferative neoplasms.

Daver N, et al. Leukemia. 2019;33:299-312. 2. Molenaar RJ, et al. Leukemia. 2015;29:2134-2142.

R/R AML Treatment for FLT3-Positive Patients: Gilteritinib


OS from phase 3 ADMIRAL trial of gilteritinib vs salvage chemo for *FLT3*-mutated AML (N=371)

Adapted from: Perl AE, Martinelli G, Cortes JE, et al. N Engl J Med. 2019;381:1728-1740.


R/R AML Treatment for IDH1-Positive Patients: Ivosidenib

OS from phase 1 dose escalation/expansion study of IDH1 inhibitor monotherapy (N=258)

R/R AML Treatment for IDH2-Positive Patients: Enasidenib

OS from phase 1/2 AG221-C-001 trial of IDH2 inhibitor monotherapy (N=239)

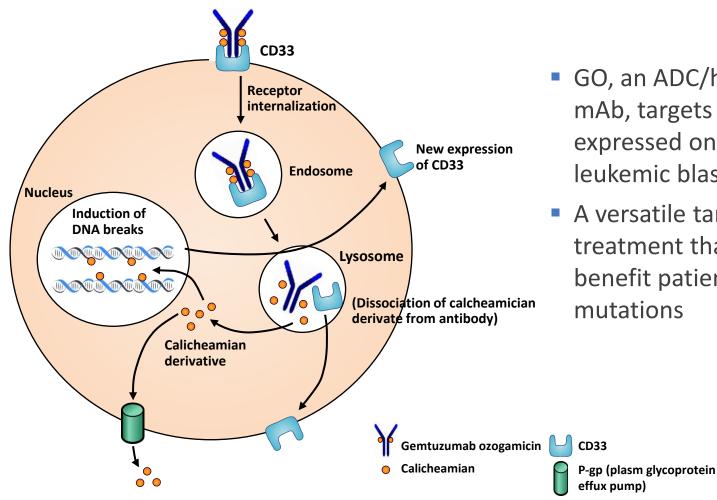
Adapted from: Stein EM, et al. Blood. 2017;130:722-31.

Slide credit: INTEGRITY

IDH Inhibitor Studies in R/R AML

Agent	Target	Study	Phase	Efficacy	Safety
lvosidenib ¹	IDH1	NCT0324542	2	ORR 41%; cCr 30%; CR 22%; OS 8.8 mos	Prolonged QTc 7%, GR ≥3; IDH-DS 4.7%, GR ≥3
Enasidenib ²	IDH2	NCT01915498	1/2	ORR 40.3%; cCR 26%; CR 19%; OS 9.3 mos	Hyperbilirubinemia 18%, GR ≥3; IDH-DS 6%, GR ≥3; thrombocytopenia 23%, GR ≥3; anemia 19%, GR ≥3

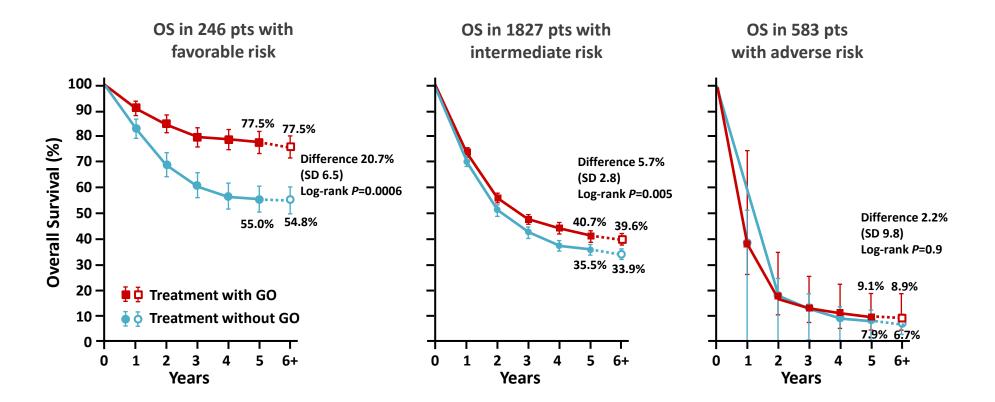
cCR, complete clinical remission; GR, grade; IDH-DS, IDH differentiation syndrome; ORR, objective response rate.


NCCN Recommendations for Patients with Targetable Cytogenetic Mutations

Young Patients	Fit, Older	Unfit, Older
(<60)	Patients (≥60)	Patients (≥60)
 Favorable-risk & positive for CD33: 7+3 induction & a single dose of GO Intermediate-risk with <i>FLT3^{mut}</i>: 7+3 induction + FLT inhibitor midostaurin Intermediate or poor risk: 7+3, or 7+3 & single dose of GO 	 Favorable-risk & positive for CD33: 7+3 induction & a single dose of GO <i>FLT3</i>^{mut}: 7+3 induction + FLT inhibitor midostaurin Intermediate or poor risk: 7+3, or 7+3 & single dose of GO 	 <i>IDH1</i>^{mut}: ivosidenib or HMA (ie, azacitidine, decitabine), or venetoclax-based Tx <i>IDH2</i>^{mut}: enasidenib or HMA, or venetoclax-based Tx <i>FLT3</i>^{mut}: HMA & TKI sorafenib, or venetoclax-based Tx

GO, gemtuzumab ozogamicin. Acute Myeloid Leukemia. https://www.nccn.org.

Anti-CD33 Gemtuzumab Ozogamicin, an ADC



- GO, an ADC/humanized mAb, targets CD33 antigens expressed on the surface of leukemic blast cells
- A versatile targeted treatment that can also benefit patients with FLT3 mutations

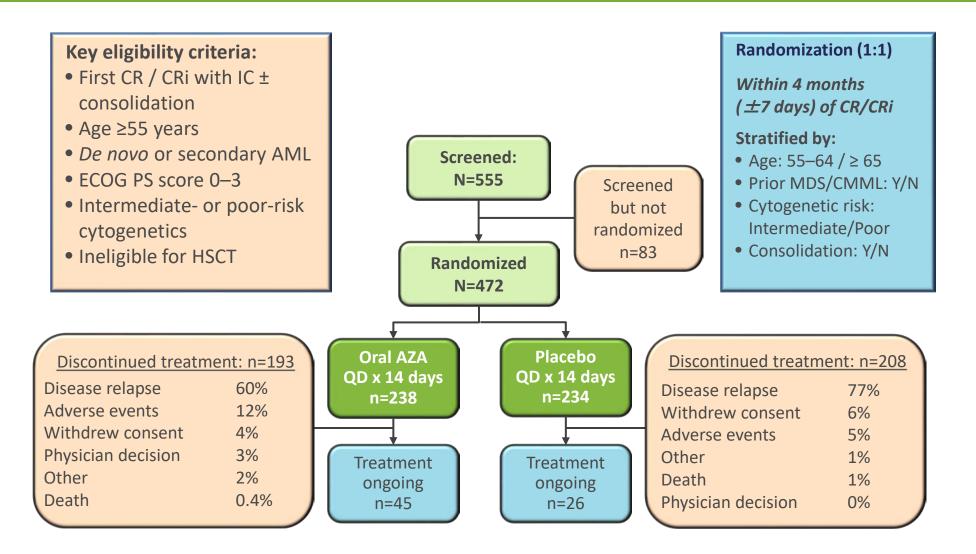
Anti-CD Added to Standard, Intensive Therapy

Meta-analysis of 3325 patients of varying cytogenetic risk levels enrolled in 5 studies of GO + standard therapy

46

Adapted from: Appelbaum FR, et al. *Blood*. 2017;130:2373-2376.

Maintenance Treatment


Maintaining Hope for Maintenance Treatments

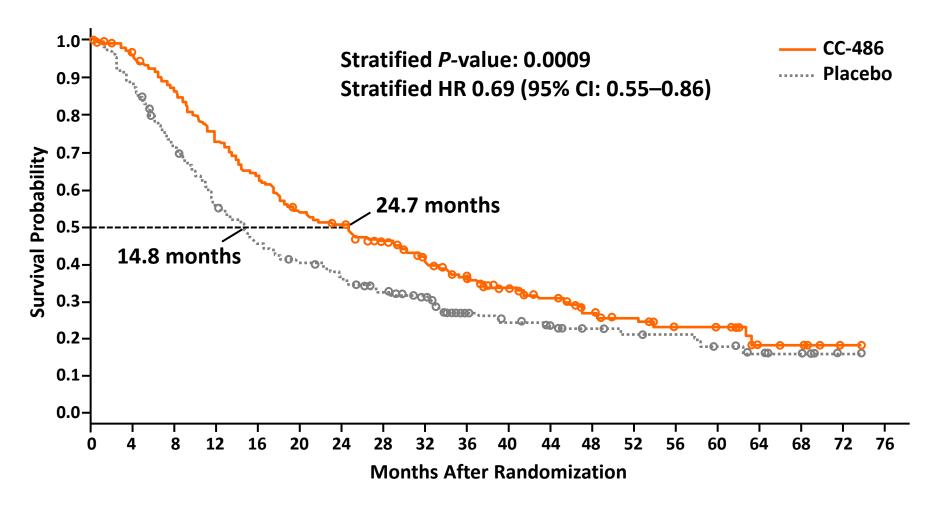
- Despite advances and new treatments, relapse common
- Effective maintenance to prolong remission, ward off relapse
- Chemo for maintenance doesn't work
- HMA with AZA + FLT3 inhibitors in clinical trials

On September 2, 2020, the FDA approved oral azacitidine as first maintenance treatment of AML

FDA press release. September 1, 2020. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-onuregazacitidine-tablets-acute-myeloid-leukemia. Accessed September 3, 2020.

Phase 3 QUAZAR AML-001 Maintenance Trial in Patients ≥55

Adapted from: Wei AH, et al. *Blood*. 2019;134(Suppl_2):LBA-3.


 $\overline{}$

INTEGRITY

Slide credit:

Survival Probability with Oral AZA (CC-486)

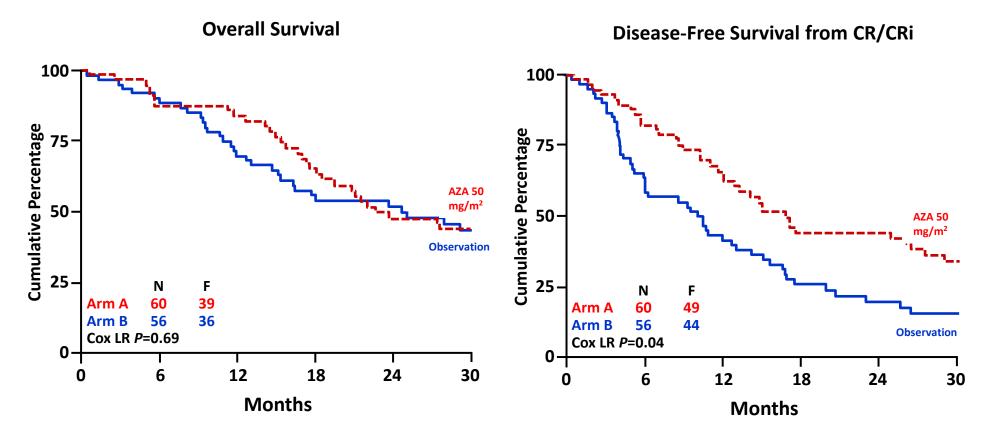
OS from phase 3 QUAZAR AML-001 maintenance trial (N=472)

 (\mathbf{i})

INTEGRITY

Slide credit:

Safety in QUAZAR AML-001


- Median treatment durations
 - Oral AZA: 12 cycles (range 1–80)
 - Placebo: 6 cycles (range 1–73)
- GI AEs in oral AZA most common in the first 2 treatment cycles
- Dose modifications due to AEs
 - Interruptions: Oral AZA 43%, placebo 175
 - Reductions: Oral AZA 16%, placebo 3%

Safety in QUAZAR AML-001

		486 236	Placebo n = 233			
	All Grades	Grade 3–4	All Grades	Grade 3–4		
Preferred term	n (%)					
Patients with ≥1 AE	231 (98)	169 (72)	225 (97)	147 (63)		
Gastrointestinal						
Nausea	153 (65)	6 (3)	55 (24)	1 (0.4)		
Vomiting	141 (60)	7 (3)	23 (10)	0		
Diarrhea	119 (50)	12 (5)	50 (22)	3 (1)		
Constipation	91 (39)	3 (1)	56 (24)	0		
Hematologic						
Neutropenia	105 (45)	97 (41)	61 (26)	55 (24)		
Thrombocytopenia	79 (34)	53 (23)	63 (27)	50 (22)		
Anemia	48 (20)	33 (14)	42 (18)	30 (13)		
Other						
Fatigue	70 (30)	7 (3)	45 (19)	2 (1)		
Asthenia	44 (19)	2 (1)	13 (6)	1 (0.4)		
Pyrexia	36 (15)	4 (2)	44 (19)	1 (0.4)		
Cough	29 (12)	0	39 (17)	0		

Phase 3 HOVON97 Maintenance Trial in Patients ≥60: Overall Survival

OS and DFS in phase 3 HOVON97 maintenance trial of subcutaneous azacitidine vs observation in patients ≥60 years (N=116)

Summary

- 8 new treatment options with different MOAs and targets available since 2017
- More treatment selections for patients who:
 - Are older and/or unfit for intensive chemo
 - Have FLT3 or IDH1/IDH2 mutations
 - Have high numbers of AML cells with high CD33 expression
- Personalized treatment more viable than ever
 - But must select patients appropriately based on cytogenetics
- Maintenance treatment with CC-486 (oral azacytidine) approved in September 2020
 - Could extend remission and event-free survival in patients not eligible for IC or alloHSCT

Thank you for completing this activity.

To claim credit, please close this tab and return to the prior browser window to complete the posttest and evaluation.

