

#### A Hospital-based Approach to Achieving Better Health Outcomes in Heart Failure

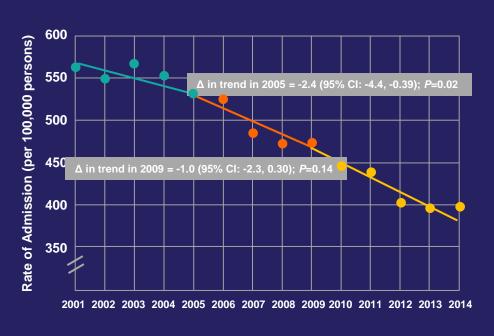


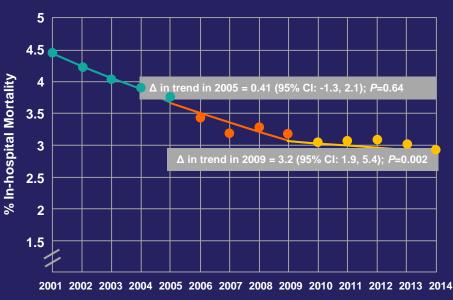


#### **Faculty**

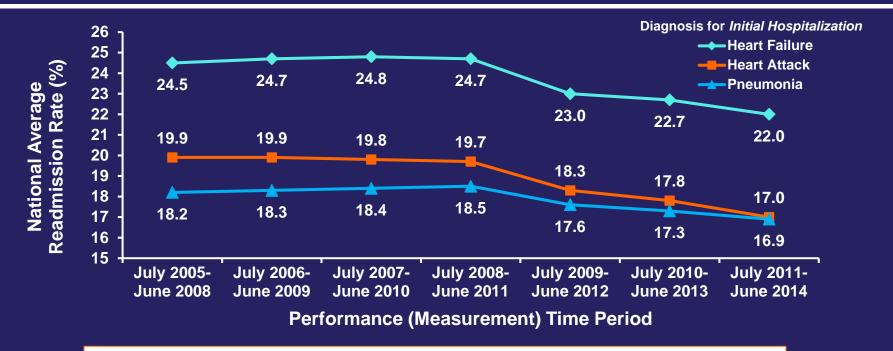
Lee Goldberg, MD, MPH
Medical Director
Heart Failure and Cardiac Transplant Program
Associate Professor of Medicine
Cardiovascular Medicine Division
University of Pennsylvania
Philadelphia, Pennsylvania

#### **Faculty Disclosures**


Consultant: Respircardia

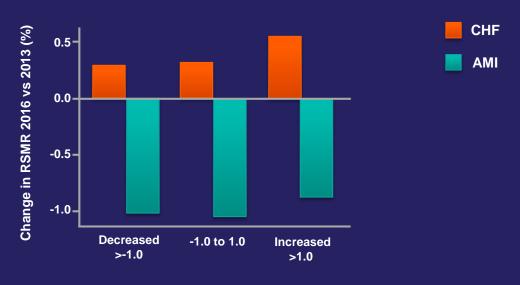

#### **Learning Objectives**

- Utilize an evidence-based approach to the diagnosis and evaluation of patients with heart failure (HF) that is consistent with current guideline recommendations
- Summarize current clinical evidence regarding the efficacy and safety of new pharmacologic therapies for the treatment of heart failure with reduced ejection fraction (HFrEF)
- Implement guideline-directed medical therapy for patients with HF
- Identify transitional care strategies to prevent disease progression and future hospitalizations among patients with HF


# Heart Failure in the Hospital Setting

## Trends in Primary HF Admissions and Inhospital Mortality (2001-2014)






### Medicare Readmission Rates Among Patients Hospitalized for HF



Despite recent decreases, a significant percentage (22%) of patients hospitalized with HF are readmitted within 30 days.

### **30-Day Risk Standardized HF Mortality Rates Under HRRP**



Change in RSRR 2016 vs 2013 (%)

While 30-day readmission rates have improved for HF, 30-day HF mortality rates have <u>increased</u> at more than half of US hospitals since the advent of Centers for CMS readmission penalties.

RSMR, risk standardized mortality rate; RSRR, risk standardized readmission rate; CMS, Centers for Medicare and Medicaid Services.

## Opportunities to Improve Patient Outcomes: Principles for Successful HF Treatment

#### **Implement GDMT**

- Initiate and switch treatment as appropriate
- II. Titration to optimal dose

#### Address Specific Care Challenges

- I. Referral
- Care coordination
- III. Adherence
- IV. Specific patient cohorts
- V. Cost of care

#### Manage Other Aspects of HF

- I. Increasing complexity of disease
- II. Comorbidities
- III. Palliative/hospice care

#### **Patient Evaluation**



#### **Assessment for HF**



A careful history and physical examination remain the cornerstones of assessment

#### **Patient History**

- Risk factors
  - Family history
  - Other conditions (eg, HTN, CAD/MI, thyroid disease, & diabetes)
- Duration of illness
- Symptoms
  - Type
  - Severity
- Recent/frequent prior hospitalizations for HF

- Diet
  - Sodium intake
- Medication
  - Discontinuation or nonadherence
  - Agents that may exacerbate HF
- De novo HF indicators
  - Inadequate BP control
  - New-onset or poorly controlled AF
  - New ischemia
  - Metabolic, respiratory, & other stressors

HTN, hypertension; CAD, coronary artery disease; MI, myocardial infarction; BP, blood pressure; AF, atrial fibrillation.

ACCF/AHA Guidelines. J Am Coll Cardiol. 2013;62(16):e147-e239.

#### Symptoms of HF

- Shortness of breath
- Chronic coughing/ wheezing
- Edema
- Fatigue/lightheadedness
- Nausea/lack of appetite

- Confusion/impaired thinking
- Elevated HR

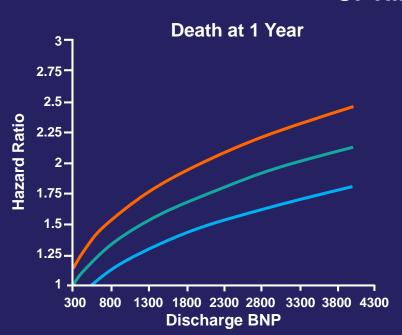
HR, heart rate.

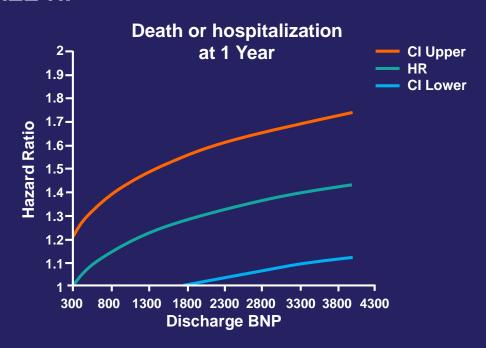
#### **Physical Examination**

- Weight loss or gain
- BP (supine and upright)
- Pulse
- JVP at rest (sitting or standing) and/or positive Kussmaul's sign
- Presence of extra heart sounds and murmurs

- Size and location of PMI
- Presence of RV heave
- Pulmonary status: RR and pleural effusion
- Hepatomegaly and/or ascites
- Peripheral edema
- Presence of cool lower extremities

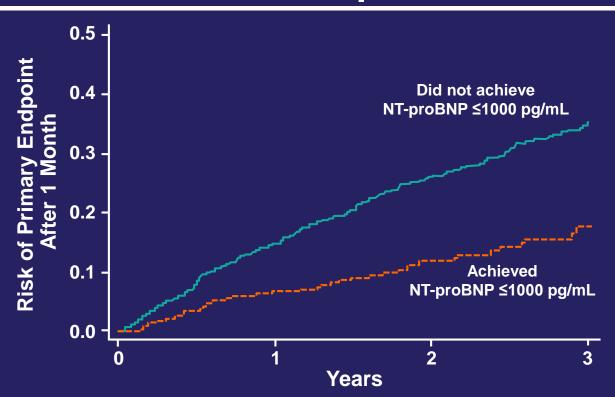
JVP, jugular venous pressure; PMI, point of maximal impulse; RV, right ventricular; RR, respiratory rate.


ACCF/AHA Guidelines. J Am Coll Cardiol. 2013;62(16):e147-e239.


### Recommendations for the Use of Biomarkers in the Evaluation of Patients with HF

| Biomarker, Application            | Setting           | COR | LOE |
|-----------------------------------|-------------------|-----|-----|
| Natriuretic peptides              |                   |     |     |
| Diagnosis or exclusion of HF      | Ambulatory, Acute | I   | Α   |
| Prognosis of HF                   | Ambulatory, Acute | I   | Α   |
| Achieve GDMT                      | Ambulatory        | lla | В   |
| Guidance for ADHF therapy         | Acute             | IIb | С   |
| Biomarkers of myocardial injury   |                   |     |     |
| Additive risk stratification      | Acute, Ambulatory | I   | Α   |
| Biomarkers of myocardial fibrosis |                   |     |     |
| Additive risk stratification      | Ambulatory        | IIb | В   |
|                                   | Acute             | IIb | Α   |

### Association Between Discharge BNP and Clinical Outcomes


#### **OPTIMIZE-HF**



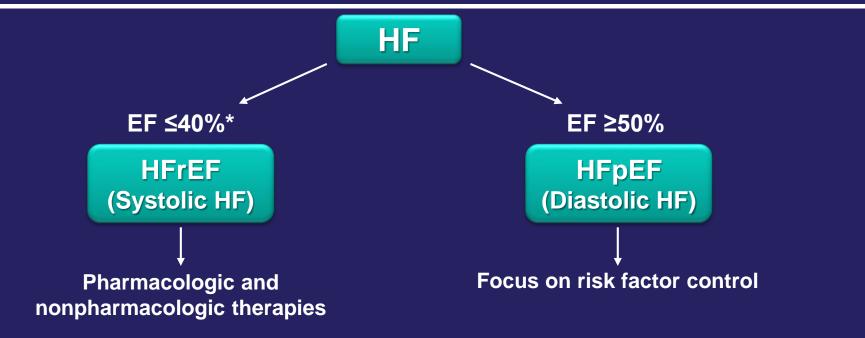


BNP, brain natriuretic peptide. Kociol RD, et al. *Circ Heart Fail.* 2011;(4) 628-636.

### NT-proBNP Reduction Lowers the Rate of CV Death or HF-related Hospitalization



NT-proBNP, N-terminal pro b-type natriuretic peptide. Zile MR, et al. *J Am Coll Cardiol*. 2016;68:2425-36.


### ACCF/AHA Stages and NYHA Functional Classes of HF

| Stage | Characteristics                                                                                                                                          | Class         | Characteristics                                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | <ul> <li>Significant risk factors for HF</li> <li>No known structural heart disease</li> <li>No signs or symptoms of HF</li> </ul>                       | None          |                                                                                                                                                      |
| В     | <ul><li>Structural heart disease</li><li>No signs or symptoms of HF</li></ul>                                                                            | 1             | No functional limitation                                                                                                                             |
| С     | <ul> <li>Structural heart disease</li> <li>Prior or current symptoms of HF</li> </ul>                                                                    | I<br>II<br>IV | <ul> <li>No functional limitation</li> <li>Symptoms with activity beyond ADLs</li> <li>Symptoms with ADLs</li> <li>Symptoms of HF at rest</li> </ul> |
| D     | <ul> <li>Refractory HF requiring specialized<br/>interventions (eg, transplant, VAD, palliative<br/>care/hospice, and experimental therapies)</li> </ul> | IV            | Symptoms of HF at rest                                                                                                                               |

ACCF/AHA, American College of Cardiology Foundation/American Heart Association; VAD, ventricular assist device; ADLs, activities of daily living.

ACCF/AHA Guidelines. J Am Coll Cardiol. 2013;62(16):e147-e239.

#### HF Type by Ejection Fraction



<sup>\*</sup>HFrEF has been defined across different guidelines by left ventricular ejection fraction 35%, <40%, and 40%.

EF, ejection fraction; HFpEF, heart failure with preserved ejection fraction. ACCF/AHA Guidelines. *J Am Coll Cardiol*. 2013;62(16):e147-e239; Tannenbaum S, et al. *Curr Opin Cardiol*. 2015;30(3):250-258.

#### **Treatment Options for HFrEF**



## Conventional Guideline-recommended Pharmacologic Treatments

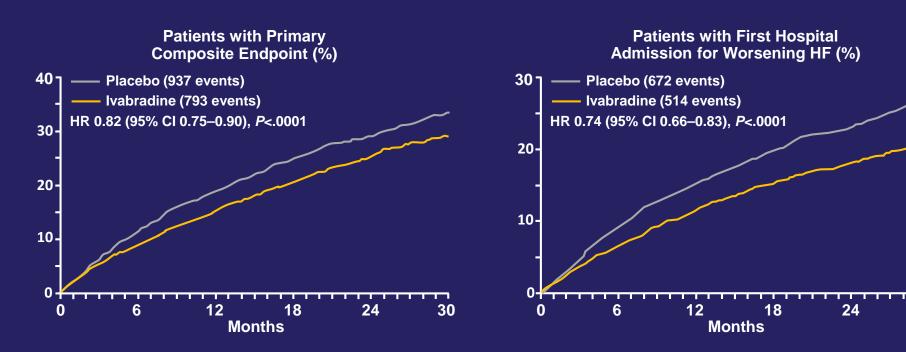
|                                      | NYHA Class |            |            |            |
|--------------------------------------|------------|------------|------------|------------|
| Therapy                              | 1          | 2          | 3          | 4          |
| ACE inhibitors, ARBs                 | ✓          | <b>✓</b>   | ✓          | ✓          |
| Beta-blockers                        | <b>(√)</b> | <b>✓</b>   | ✓          | ✓          |
| Aldosterone antagonists              |            | <b>(√)</b> | ✓          | ✓          |
| Diuretics                            |            | <b>(√)</b> | ✓          | ✓          |
| Digoxin                              |            |            | <b>(√)</b> | <b>(√)</b> |
| Hydralazine and isosorbide dinitrate |            | <b>(√)</b> | <b>(√)</b> | <b>(√)</b> |

(✓) For select patients.

ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; NYHA, New York Heart Association. ACCF/AHA Guidelines. *J Am Coll Cardiol*. 2013;62(16):e147-e239.

#### **Newer Therapies for the Treatment of HF**

| Therapy                                                | Mechanism of Action                                                                                                                                                               |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ivabradine                                             | <ul> <li>Selective inhibition of sinus node I<sub>f</sub> channel (decreases HR)</li> <li>Does <u>not</u> affect cardiac ionotropy and can be used with a beta blocker</li> </ul> |
| Angiotensin<br>Receptor–Neprilysin<br>Inhibitor (ARNI) | <ul> <li>Angiotensin receptor blockade + inhibition of neprilysin*<br/>(inhibits RAAS and augmenting NP activity)</li> </ul>                                                      |

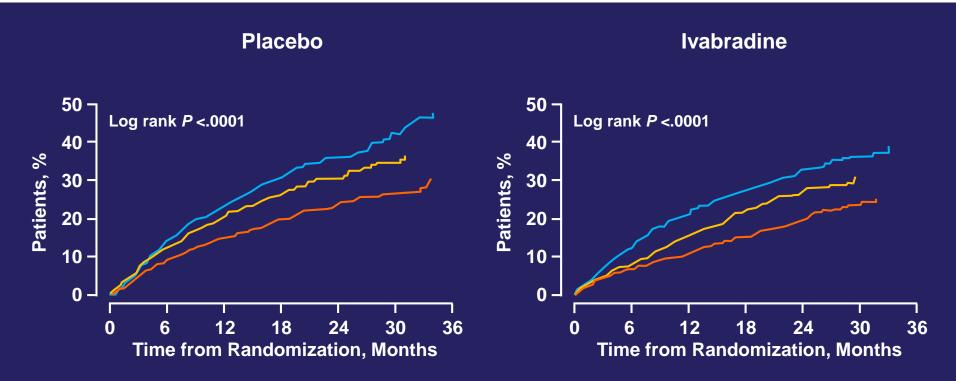

<sup>\*</sup>The metallopeptidase neprilysin hydrolyzes natriuretic peptides.

RAAS, renin-angiotensin-aldosterone system; NP, natriuretic peptide.

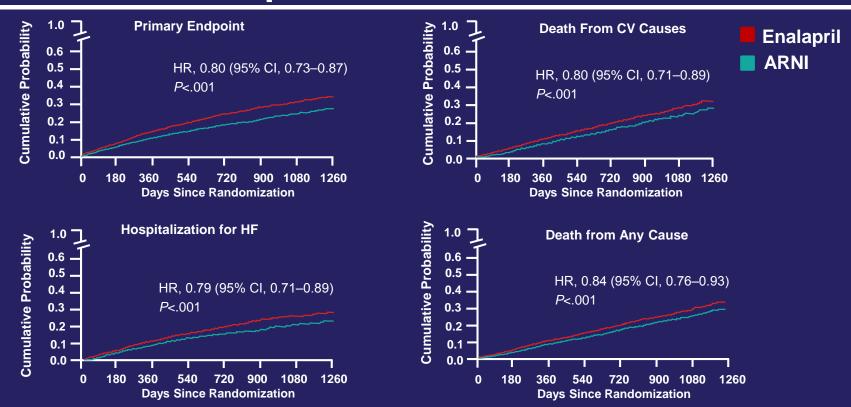
von Lueder TG, et al. *Pharmacol Ther*. 2014;144(1):41-49; DiFrancesco D. *Circ Res*. 2010;106(3):434-446;

Rosa GM, et al. Expert Opin Drug Metab Toxicol. 2014;10(2):279-291. Corlanor [prescribing information]. Amgen; 2015.

### Impact of Ivabradine Treatment on CV Death or Hospital Admission for Worsening HF

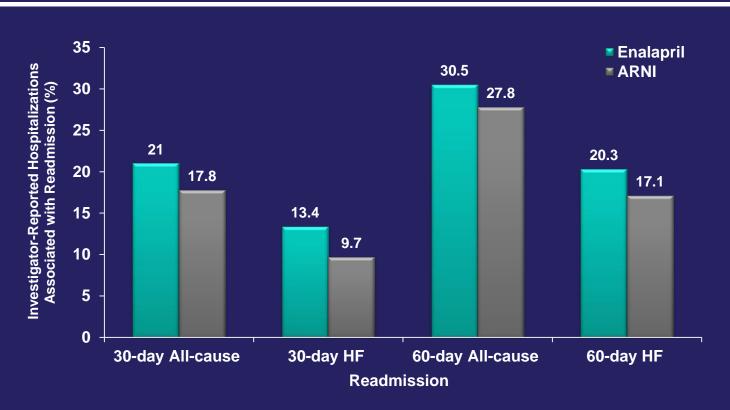



CV, cardiovascular; HR, hazard ratio; CI, confidence interval. Swedberg K, et al. *Lancet*. 2010;376(9744):875-885.


### Ivabradine Added on to Standard of Care Therapy Reduces the Risk of Hospitalizations for HF

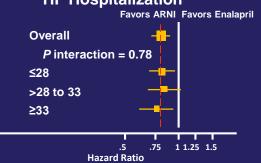
| Hospitalization | Ivabradine<br>(N=3241) | Placebo<br>(N=3264) | HR<br>(95% CI)      |                                 | <i>P</i> value |
|-----------------|------------------------|---------------------|---------------------|---------------------------------|----------------|
| First           | 514 (16%)              | 672 (21%)           | 0.75<br>(0.65–0.87) |                                 | <i>P</i> <.001 |
| Second          | 189 (6%)               | 283 (9%)            | 0.66<br>(0.55–0.79) |                                 | <i>P</i> <.001 |
| Third           | 90 (3%)                | 128 (4%)            | 0.71 (0.54–0.93)    |                                 | <i>P</i> <.012 |
|                 |                        |                     | 0.4                 | 0.6 0.8 1.<br>Favors Ivabradine |                |

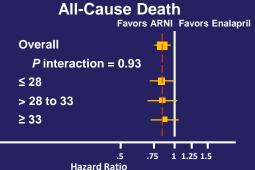
### Heart Rate Reduction with Ivabradine Improves Outcomes Independently of HF Duration




### Effect of ARNI Treatment on the Risk of Death or First-time Hospitalization for HF



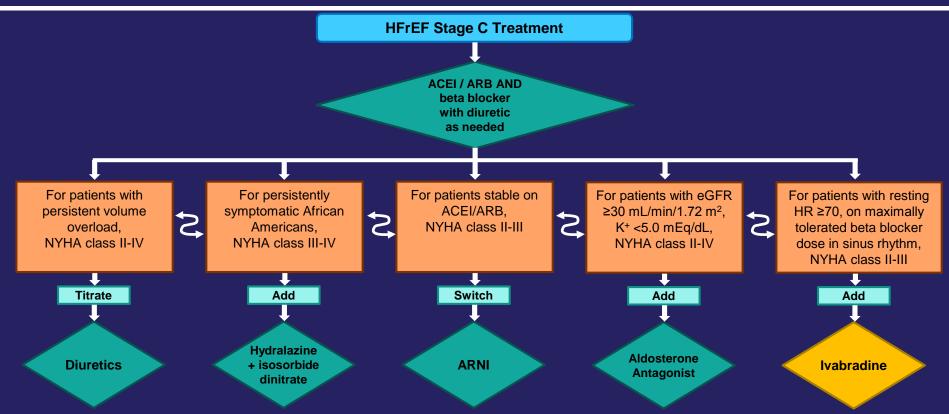

McMurray JJ, et al. *N Engl J Med*. 2014;371(11):993-1004.


## **ARNI Treatment Reduces the Incidence of Hospital Readmissions**



## ARNI Treatment Reduces CV Death and HF Hospitalization Across the LVEF Spectrum



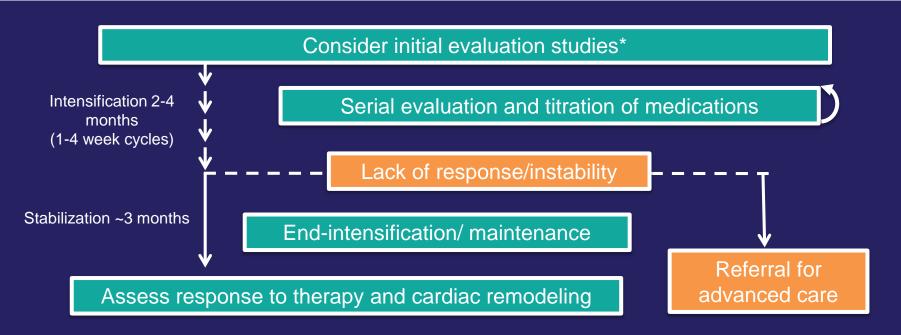





LVEF, left ventricular ejection fraction.

Solomon SD, et al. Circ Heart Fail. 2016;9(3):e002744.

### **How Should Newer Therapies Be Incorporated** into GDMT?




Yancey, et al. J Am Coll Cardiol. 2018;71(2):201-230.

#### PRIME-HF: When Should Therapy Be Initiated?

- Multi-center, patient-level, randomized, open-label study
- Patient population (N=~450)
  - Reduced LVEF of 35%
  - HR 70 bpm
  - Discharged following stabilization from acute HF
- Predischarge initiation of ivabradine or usual care
- Post-discharge follow-up at 7-14 days, 6 weeks, and 180 days
- HR, systolic BP, and quality of life to be assessed

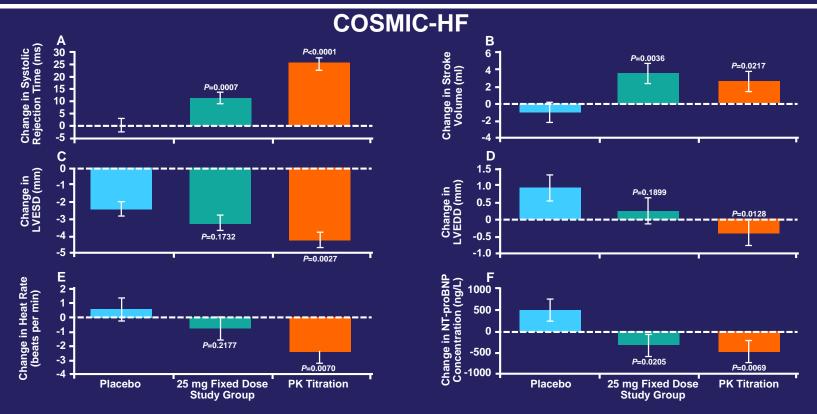
#### Testing and Medication Titration for Patients with HFrEF



<sup>\*</sup>BNP/NT-proBNP, complete blood count, basic metabolic panel, liver function tests, iron and thyroid studies, HbA1c, x-ray, echocardiogram, coronary angiogram, cardiac MRI, biopsy, other imaging.

Yancey et al. J Am Coll Cardiol. 2018;71(2):201-230.

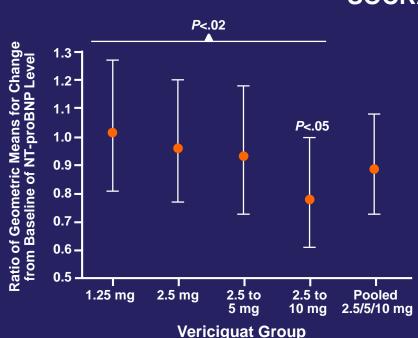
### When to Refer Patients for Advanced HF Care: I-NEED-HELP

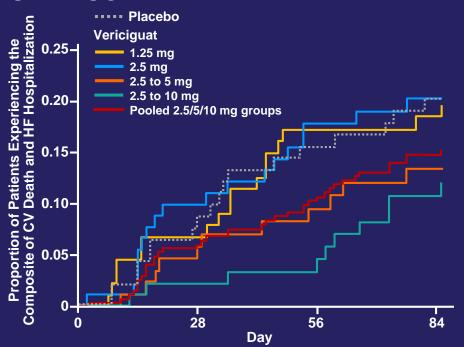

- V inotropes
- NYHA IIIB/IV or persistently elevated natriuretic peptides
- End-organ dysfunction
- Ejection fraction ≤35%
- Defibrillator shocks
- Hospitalizations >1
- Edema despite escalating diuretics
- Low blood pressure, high heart rate
- Prognostic medication progressive intolerance or down-titration of GDMT

Yancey, et al. J Am Coll Cardiol. 2018;71(2):201-230.

# Therapies for HFrEF Under Investigation




### **Effects of Omecamtiv Mecarbil on Cardiac Function and Structure**




Teerlink JR, et al. Lancet. 2016;388:2895-903.

### Effect of Vericiguat Treatment in Patients with Worsening HFrEF

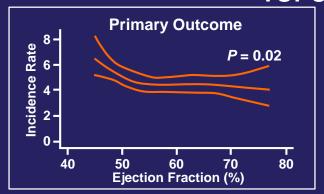


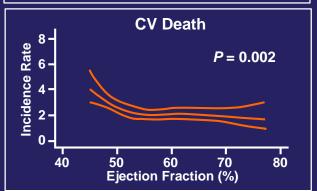


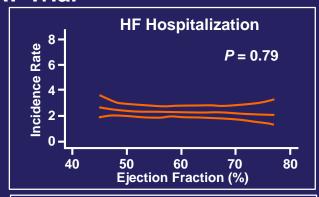


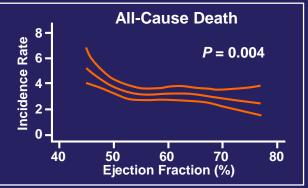
#### Treatment of HFpEF




#### Significance of HFpEF

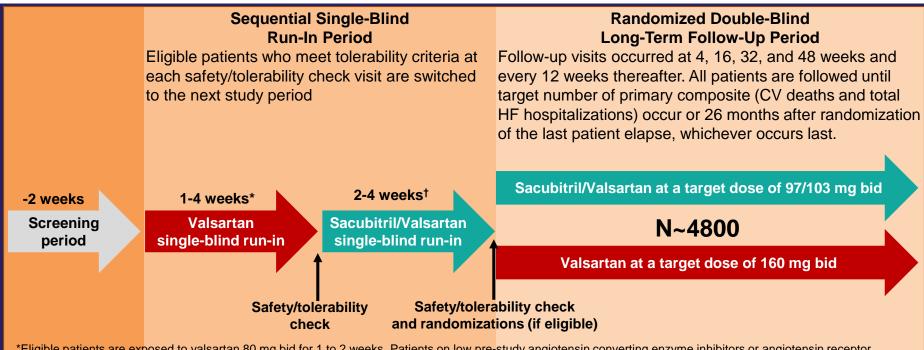

- Increasing incidence
- Frequent in elderly female patients
- Comorbidities include obesity, CAD, DM, AF, and hyperlipidemia
- HTN is the most important cause (60%-89% prevalence)
- Represents a growing proportion of patients with HF requiring hospitalization


DM, diabetes mellitus.


## Efficacy of Spironolactone Treatment of HFpEF Across the LVEF Spectrum

#### **TOPCAT Trial**










Solomon SD, et al. Eur Heart J. 2016;37:455–462.

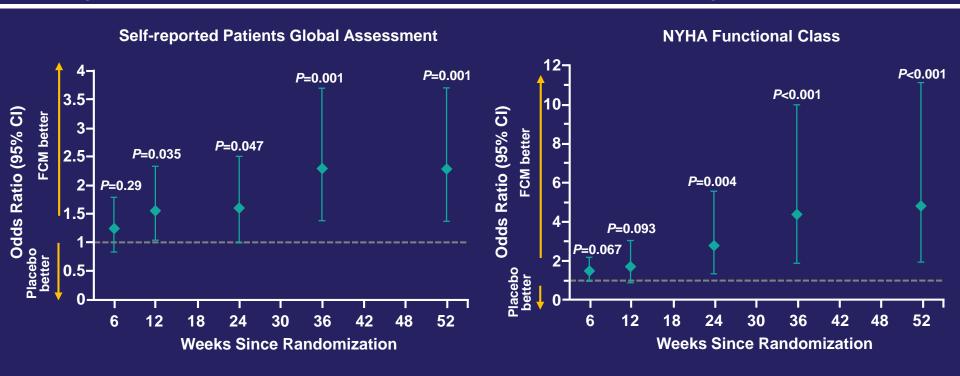
### ARNI for the Treatment of Patients with HFpEF: PARAGON-HF



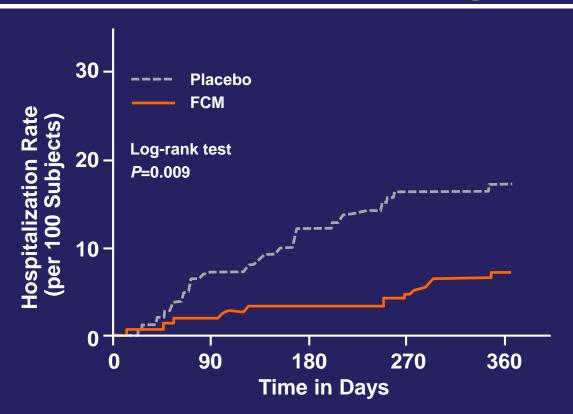
\*Eligible patients are exposed to valsartan 80 mg bid for 1 to 2 weeks. Patients on low pre-study angiotensin converting enzyme inhibitors or angiotensin receptor blocker doses or those with tolerability concerns are first started on valsartan 40 mg bid 1 to 2 weeks and then up-titrated to valsartan 80 mg bid for 1 to 2 weeks.

†Patients tolerating valsartan 80 mg bid for 1 to 2 weeks are switched to sacubitril/valsartan 49/51 mg bid for 2 to 4 weeks.

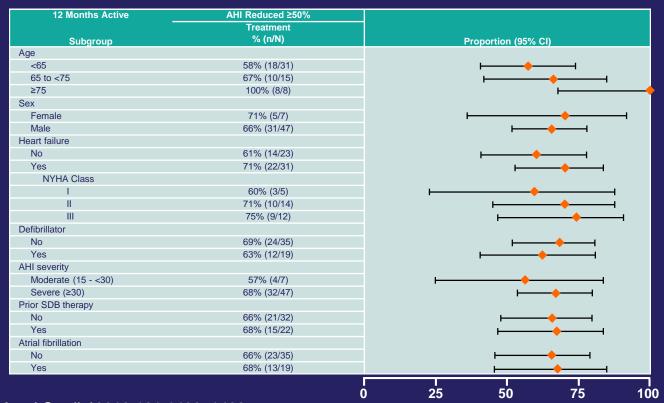
### **Management of Comorbidities**




### Management of Hypertension in Patients with HF


- Target an optimal BP of <130/80 mm Hg in those with HTN and at increased risk (stage A HF)
- Titration of GDMT to attain SBP <130 mm Hg in patients with HFrEF and HTN
- Titration of GDMT to attain SBP <130 mm Hg in patients with HFpEF and persistent HTN after management of volume overload

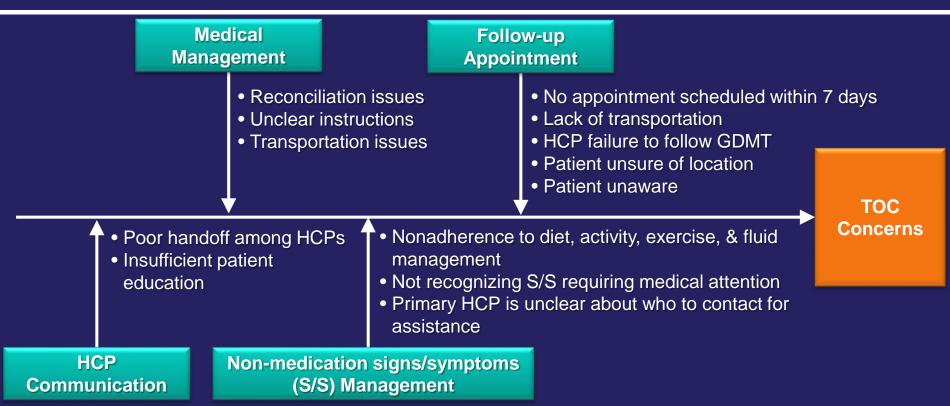
BP, blood pressure; SBP, systolic blood pressure.


## **Use of Intravenous Iron for Patients with Symptomatic HF and Iron Deficiency**



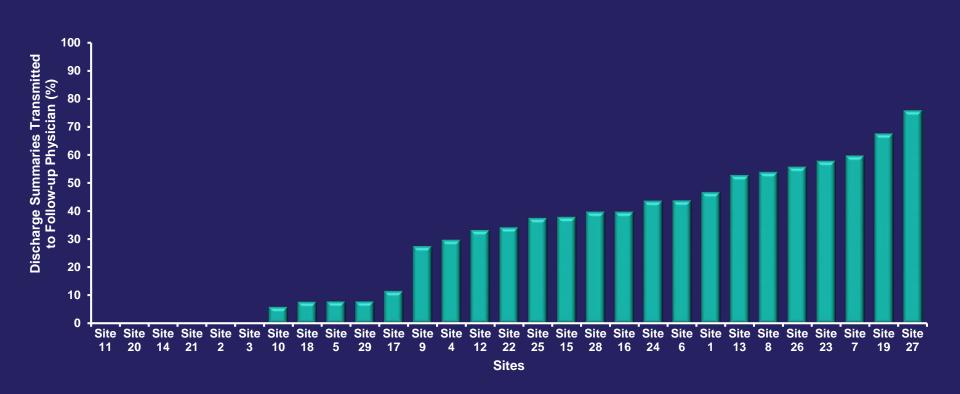
### Impact of Intravenous Iron Therapy on Hospitalization Due to Worsening HF




### Benefits of Phrenic Nerve Stimulation in the Treatment of Central Sleep Apnea



# **Improving Outcomes Through Effective Transitional Care**




#### **Obstacles to Effective Transitions of Care in HF**



HCPs, health care providers; TOC, transitions of care. AHA Scientific Statement. *Circ Heart Fail.* 2015;8(2):384-409.

### Frequency of Discharge Summary Transmission to Follow-up Providers



### **Systematic Review of Transitional Care Interventions**

| Intervention                                                                  | Impact                                                           | Evidence                                   |
|-------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|
| Home-visiting programs and multidisciplinary HF (MDS-HF) clinic interventions | All-cause 3 to 6 months readmission                              | High                                       |
| Structured telephone support (STS) interventions                              | HF-specific and all-cause readmissions                           | High (HF-specific)<br>Moderate (all-cause) |
| Home-visiting programs                                                        | HF-specific readmission and composite end point*                 | Moderate                                   |
| Home-visiting programs, MDS-HF clinics, and STS interventions                 | Mortality                                                        | Moderate                                   |
| High-intensity home-visiting program                                          | All-cause 30 day readmission and composite end point* at 30 days | Low                                        |
| Telemonitoring and primarily educational interventions                        | Did <b>NOT</b> reduce readmissions or mortality                  | Low                                        |

<sup>\*</sup>All-cause readmission or death Feltner C, et al. *Annals Intern Med.* 2014;160(11):774-784.

### Sytematic Review of Transitional Care Interventions Cont'd

| Intervention                                                                  |   | Impact                                                           | Evidence                                   |
|-------------------------------------------------------------------------------|---|------------------------------------------------------------------|--------------------------------------------|
| Home-visiting programs and multidisciplinary HF (MDS-HF) clinic interventions | + | All-cause 3 to 6 months readmission                              | High                                       |
| Structured telephone support (STS) interventions                              |   | HF-specific and all-cause readmissions                           | High (HF-specific)<br>Moderate (all-cause) |
| Home-visiting programs                                                        |   | HF-specific readmission and composite end point*                 | Moderate                                   |
| Home-visiting programs, MDS-HF clinics, and STS interventions                 | 1 | Mortality                                                        | Moderate                                   |
| High-intensity home-visiting program                                          | • | All-cause 30 day readmission and composite end point* at 30 days | Low                                        |
| Telemonitoring and primarily educational interventions                        |   | Did <b>NOT</b> reduce readmissions or mortality                  | Low                                        |

### AHA Recommended Strategies for Improving Transitional Care in HF

- Patient education
- Phone follow-up (48-72 hours)
- Early postdischarge follow-up visit (7-10 days)
- Early assessment after admission

- Medication reconciliation
- Caregiver inclusion
- Home visits
- Handoff communication to post-hospital providers

### Enhanced HF Patient Education: What Domains Should Be Covered?

- Recognition of escalating symptoms/concrete plan for response
- Activity/exercise
- Indications, use, and need for medication adherence
- Daily weight monitoring
- Modification of risk factors for HF progression
- Diet
- End-of-life considerations
- Follow-up
- Discharge instructions

## Risk of 30-Day Readmission by Postdischarge Follow-up Contact

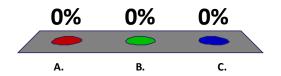


Unadjusted Risk of 30-Day Readmission

### **Case Evaluations**



#### Case Evaluation #1: Patient Description


Judy is a 68-year-old woman who presents to the ED for acute distress due to breathlessness and uncontrolled coughing. She reports that over the past 4 months, she has had some difficulty climbing stairs and breathing when lying down (having to sit back up to catch her breath). Judy's medical history includes a remote history of smoking and alcohol consumption. She is dyslipidemic and moderately obese.



#### Case Evaluation #1: Question 1

Judy's physical exam confirms dyspnea on exertion and reveals significant ankle edema. Her BP = 130/86 mm Hg, HR = 90 bpm, JVD 12 cm, and she has a positive Kussmaul sign. Which of the following tests would you order to further aid in your diagnosis?

- A. Blood testing for BNP/NT-proBNP
- B. Invasive hemodynamic monitoring
- C. Endomyocardial biopsy

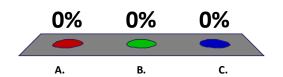




#### **Case Evaluation #1: Question 2**

Judy is diagnosed with NYHA III Stage C HFrEF. Following stabilization, she is initiated on a regimen that includes lisinopril and carvedilol. At her 3 month follow-up, clinical and laboratory assessments indicate that she is stable with her current treatment plan. Which of the following would you recommend for Judy?

- A. Maintain current treatment regimen
- B. Switch to ARNI
- C. Switch to ivabradine





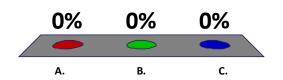

### Case Evaluation #1: Question 3

If you were to switch Judy to ARNI, how long would wait before initiating ARNI after discontinuing lisinopril?

- A. 12 hours
- B. 36 hours
- C. 3 days



#### Case Evaluation #2: Patient Description

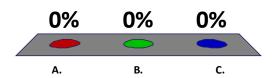

Jim is a 73-year-old man who presents with breathlessness over the past 2 days. His history includes 3 prior hospital admissions for worsening HF over 2 years. He has difficulty with ADLs. Previous echocardiograms have shown moderate LV systolic dysfunction (EF 26%, PASP 55 mm Hg, EDD 6.7 cm). Physical exam reveals BP 98/78 mm Hg, HR100 bpm, RR 25/min, S<sub>4</sub>, and displaced point of maximal impulse. Jim's EMR reveals that he has a history of iron deficiency as well. His current medications include aspirin, furosemide, enalapril, and carvedilol.



#### Case Evaluation #2: Question 1

### Which of the following changes to Jim's therapeutic regimen would you recommend for Jim?

- A. Addition of ARNI to Jim's current treatment regimen
- B. Increase the dose of carvedilol
- C. Switch Jim from enalapril to ivabradine






### Case Evaluation #2: Question 2

What type of intervention, if any, would you consider for the treatment of Jim's iron deficiency?

- A. Dietary iron supplementation
- **B.** Intravenous iron therapy
- C. Erythropoietin therapy
- D. No therapy



#### **Summary**

- Despite recent progress in the reduction of HF-related readmission rates, the health outcomes of many patients with HF remain suboptimal
- Optimal management of HF requires thorough and accurate patient evaluation along with the implementation of guideline-directed medical therapy to control symptoms and improve prognosis
- New treatment options have expanded the range of strategies to achieve therapeutic goals and demonstrated the capacity to significantly improve patient outcomes over standard therapy



#### **Clinical Pearls**

- For patients with symptoms of HF, apply a multifaceted evaluation approach to identify underlying causes and risk for disease progression
- Implement guideline-directed medical therapy for all patients with HF
- Consider treatment using a newer agent with a novel mechanism of action for any patients who remain symptomatic despite their current regimen as well as those who are stable but may benefit from a switch in therapy
- Prior to discharge, evaluate patients' clinical status, comorbid conditions, and current medication regimen, and adjust the care plan accordingly
- Schedule timely follow-up and ensure adequate communication of the care plan to the nursing home team, home healthcare team, PCP, or family caregiver

### **Questions and Answers**



### Thank You!

