Pulmonary Hypertension: A Patient-Centered, Team-based Approach to Optimizing Outcomes in PAH and CTEPH
Faculty

Ioana R. Preston, MD, FACCP
Associate Professor of Medicine
Tufts University School of Medicine
Director, Pulmonary Hypertension Center
Tufts Medical Center
Boston, Massachusetts
Faculty Disclosures

- Consultant: Acceleron, Actelion, Gilead, Liquidia, Pfizer, United Therapeutics
- Grants to TMC: Acceleron, Actelion, Bayer, Complexa, Gilead, Liquidia, United Therapeutics
Learning Objectives

- Identify strategies to screen and improve early recognition of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH)
- Apply guideline recommendations to the accurate diagnosis of PAH and CTEPH
- Develop a guideline-directed, evidence-based management plan for PAH and CTEPH that includes consideration of novel therapies and current clinical trial data
- Establish a multidisciplinary, patient-centered approach to care for patients with PAH or CTEPH
Introduction
WHO Classification Groups

Group 1
PAH

Group 2
PH due to Left Heart Disease

Group 3
PH due to Lung Disease or Hypoxia

Group 4
CTEPH

Group 5
PH with Unclear Multifactorial Mechanisms

PAH & CTEPH:
mPAP >25 mmHg
PAWP <15 mmHg
PVR >3 Wood units

CTEPH Only:
Emboli in pulmonary arteries

ESC/ERS, European Society of Cardiology/European Respiratory Society; mPAP, mean pulmonary arterial pressure; PAWP, pulmonary arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; WHO, World Health Organization.

PAH Group I

- Idiopathic (IPAH)
- Hereditary (HPAH)
- Associated with (APAH)
 - Collagen vascular disease
 - Congenital systemic-to-pulmonary shunts
 - Portal hypertension
 - HIV infection
 - Drugs/toxins

- Persistent pulmonary hypertension of the newborn
- Associated with venous or capillary involvement
 - Pulmonary veno-occlusive disease (PVOD)
 - Pulmonary capillary hemangiomatosis (PCH)
Right-sided Heart Failure
Early Recognition of PAH and CTEPH
Diagnosed Patients: Age Distribution & Prevalence

PAH vs CTEPH
- **PAH**: 15 cases per million adults
- **CTEPH**: 3.2 cases per million adults

WHO Functional Classes: PAH & CTEPH

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No limitation of usual physical activity; ordinary physical activity does not cause increased dyspnea, fatigue, chest pain, or presyncope.</td>
</tr>
<tr>
<td>II</td>
<td>Mild limitation of physical activity. There is no discomfort at rest, but normal physical activity causes increased dyspnea, fatigue, chest pain, or presyncope.</td>
</tr>
<tr>
<td>III</td>
<td>Marked limitation of physical activity. There is no discomfort at rest, but less than normal physical activity causes increased dyspnea, fatigue, chest pain, or presyncope.</td>
</tr>
<tr>
<td>IV</td>
<td>Unable to perform any physical activity at rest and may have signs of right ventricular (RV) failure. Dyspnea and/or fatigue may be present at rest, and symptoms are increased by almost any physical activity.</td>
</tr>
</tbody>
</table>

Importance of Early Recognition

![Graph showing survival rates for different types of PAH](chart)

Survival
- **PAH**
- **APAH-Other**
- **APAH-CHD**
- **IPAH/HPAH**
- **APAH-CTD**

Follow-up Years
- 100%
- 81%
- 73%
- 64%
- 31%
- 25%
- 17%

Screened
- Routine practice

- CHD, congenital heart disease; CTD, connective tissue disease; SSc, systemic sclerosis.
Importance of Early Recognition (cont’d)

- CTEPH is only PH with potential cure
- Pulmonary endarterectomy (PEA)
 - 20%-40% are inoperable
 - 80%-90% cured with PEA
 - Procedure mortality
 - In-hospital mortality: 4.7%
 - 1-year postoperative mortality: 7%

PAH Screening: ESC/ERS Recommendations

Symptoms of PH
Initial: Nonspecific, RV dysfunction
- Dyspnea
- Fatigue
- Weakness
- Angina
Later: Progressive RV failure

PAH
- Resting echocardiogram
 - 1° relatives of HPAH
 - PoPH: liver transplant
- Annual echocardiogram
 - 1° relatives of HPAH
 - PAH mutation +
- Exercise echocardiogram not recommended in high-risk patients

SSc-PAH (APAH-CTD)
- Resting echocardiogram
 - Asymptomatic patients
- Combined approach
- Annual screening
 - Echocardiograph, PFTs, biomarkers
- mPAP 21-24 mmHg
- DETECT algorithm
 - >3 years disease
 - DLCO <60% predicted

DLCO, diffusing lung capacity for carbon monoxide; PFT, pulmonary function test; PoPH, portopulmonary hypertension; RV, right ventricular.

Screening for CTEPH

Risk Factors for CTEPH

- History of pulmonary embolism (PE)
- Right-sided heart strain at initial PE
- Hypercoagulable states
 - Elevated factor VIII
 - Factor V Leiden mutation
 - Lupus
- Splenectomy
- Hypothyroidism
- Chronic inflammation
- History of malignancy
- Ventriculoarterial shunts or pacemakers
- Unexplained PH

Incidence after acute PE: 0.5% to 9%
History of acute PE in diagnosed: 75%

Diagnosis of PAH and CTEPH
Diagnostic Algorithm: ESC/ERS Guidelines

1. **Symptoms, signs, history suggestive of PH**
 - Determine echocardiographic probability of PH
 - **High or intermediate**
 - Consider left heart disease and lung disease by symptoms, signs, risk factors, ECG, PFT+DLCO, choix radiograph and HRCT, arterial blood gases
 - **Yes**
 - Diagnosis of left heart disease or lung disease confirmed?
 - No sign of severe PH/RV dysfunction
 - No
 - Treat underlying disease
 - Signs of severe PH/RV dysfunction
 - **Yes**
 - Refer to PH expert center
 - **No**
 - V/Q Scan
 - Mismatched perfusion defects?
 - No

2. **Low**
 - Consider other causes and/or follow-up

V/Q Scan

Ventilation Perfusion

Normal or Mottled Pattern

PAH

CTEPH

At least one segmental perfusion defect inconsistent with ventilation scan findings

CTEPH possible: CT pulmonary angiography, RHC +/- pulmonary angiography

PAH likely
Specific diagnostic tests

CTD
Drugs - Toxin
HIV

CTD

CHD
PoPH
Schistosomiasis

Mean pulmonary artery pressure (mPAP) of ≥25 mmHg at rest

AND

Mean pulmonary capillary wedge pressure (PCWP) of <15 mmHg

(No evidence of left-heart disease)

PVR >3 Wood units

- Most PH cases are not in WHO group I!!!
- **PAH**
 - ↑PVR
 - ↑Transpulmonary pressure gradient (TPG)
 - Normal left-sided filling pressures
- Pulmonary venous hypertension (**PVH**) characterized by
 - ↑PCWP, usually normal TPG, and PVR
Therapy for PAH
Targeting Multiple Pathologic Pathways Improves Response

Goals of Treatment in 2018: Improvement to a Goal

- **However…** *improvement* and *normalization* of **ALL clinical parameters** to make patients **LOW RISK** is the goal in PAH treatment
- **Preservation or prevention of worsening** is no longer the goal

<table>
<thead>
<tr>
<th>Determinants of Prognosis (estimated 1-year mortality)</th>
<th>Low Risk (<5%) AT GOAL!!!</th>
<th>Intermediate Risk (5-10%) NOT AT GOAL</th>
<th>High Risk (>10%) NOT AT GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical signs of right heart failure</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Progression of symptoms</td>
<td>No</td>
<td>Slow</td>
<td>Rapid</td>
</tr>
<tr>
<td>Syncope</td>
<td>No</td>
<td>Occasional syncope</td>
<td>Repeated syncope</td>
</tr>
<tr>
<td>WHO Functional Class</td>
<td>I, II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>6MWD</td>
<td>>440 m</td>
<td>165-440 m</td>
<td><165 m</td>
</tr>
<tr>
<td>Cardiopulmonary exercise testing</td>
<td>Peak VO$_2$ >15 mL/min/kg (>65% predicted) VE/VCO$_2$ slope <36</td>
<td>Peak VO$_2$ 11-15 mL/min/kg (35%-65% predicted) VE/VCO$_2$ slope 36-44.9</td>
<td>Peak VO$_2$ <11 mL/min/kg (<35% predicted) VE/VCO$_2$ slope ≥45</td>
</tr>
<tr>
<td>NT-proBNP levels</td>
<td>BNP <50 ng/L</td>
<td>BNP 50-300 ng/L</td>
<td>BNP >300 ng/L</td>
</tr>
<tr>
<td></td>
<td>NT-pro BNP <300 ng/L</td>
<td>NT-pro BNP 300-1400 ng/L</td>
<td>NT-pro BNP >1400 ng/L</td>
</tr>
<tr>
<td>Imaging (ECHO or CMR)</td>
<td>RA area <18 cm2</td>
<td>RA area 18-26 cm2</td>
<td>RA area >26 cm2</td>
</tr>
<tr>
<td></td>
<td>No pericardial effusion</td>
<td>No/minimal pericardial effusion</td>
<td>Pericardial effusion</td>
</tr>
<tr>
<td>Hemodynamics</td>
<td>RAP <8 mmHg Cl ≥2.5 L/min/m2 SvO$_2$ > 65%</td>
<td>RAP 8-14 mmHg Cl 2.0-2.4 L/min/m2 SvO$_2$ 60%-65%</td>
<td>RAP >14 mmHg Cl <2.0 L/min/m2 SvO$_2$ <60%</td>
</tr>
</tbody>
</table>

6MWD, 6-minute walk distance; CI, pulmonary clearance; CMR, cardiovascular magnetic resonance; NT-pro BNP, N-terminal pro-B-type brain natriuretic peptide; RA, right atrial; RAP, right atrial pressure; SVO$_2$, mixed venous oxygen saturation; VE/VCO$_2$, ventilation:carbon dioxide output; VO$_2$, peak oxygen uptake.

Drug Monotherapy
Medications for PAH: ESC/ERS Guidelines

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class - Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WHO FC II</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>I</td>
</tr>
<tr>
<td>Endothelin receptor antagonists (ERA)</td>
<td>I</td>
</tr>
<tr>
<td>Ambrisentan</td>
<td>I</td>
</tr>
<tr>
<td>Bosentan</td>
<td>I</td>
</tr>
<tr>
<td>Macitentan — NOVEL AGENT</td>
<td>IIb</td>
</tr>
<tr>
<td>Phosphodiesterase type-5 inhibitors (PDE-5i)</td>
<td>C</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>I</td>
</tr>
<tr>
<td>Tadalafil</td>
<td>I</td>
</tr>
<tr>
<td>Vardenafil*</td>
<td>IIb</td>
</tr>
<tr>
<td>Guanylate cyclase stimulators</td>
<td>I</td>
</tr>
<tr>
<td>Riociguat — NOVEL AGENT</td>
<td>I</td>
</tr>
<tr>
<td>Prostacyclin analogues</td>
<td>—</td>
</tr>
<tr>
<td>Epoprostenol</td>
<td>—</td>
</tr>
<tr>
<td>Iloprost</td>
<td>—</td>
</tr>
<tr>
<td>IV*</td>
<td>—</td>
</tr>
<tr>
<td>Treprostinil</td>
<td>—</td>
</tr>
<tr>
<td>Subcutaneous (SC)</td>
<td>—</td>
</tr>
<tr>
<td>Inhaled</td>
<td>—</td>
</tr>
<tr>
<td>IV</td>
<td>—</td>
</tr>
<tr>
<td>Oral</td>
<td>—</td>
</tr>
<tr>
<td>Beraprost*</td>
<td>—</td>
</tr>
<tr>
<td>Prostacyclin receptor (IP) agonists</td>
<td>I</td>
</tr>
<tr>
<td>Selexipag (oral) — NOVEL AGENT</td>
<td>I</td>
</tr>
</tbody>
</table>

*Included in recommendations but not yet approved for PAH indication

FC, functional class.
Initial Combination Therapy Medications for PAH: ESC/ERS Guidelines

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class - Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WHO FC II</td>
</tr>
<tr>
<td>Ambrisentan + tadalafil</td>
<td>I</td>
</tr>
<tr>
<td>Other ERA + PDE-5i</td>
<td>Ila</td>
</tr>
<tr>
<td>Bosentan + sildenafil + IV epoprostenol</td>
<td>—</td>
</tr>
<tr>
<td>Bosentan + IV epoprostenol</td>
<td>—</td>
</tr>
<tr>
<td>Other ERA or PDE-5i + SC treprostinil</td>
<td>—</td>
</tr>
<tr>
<td>Other ERA or PDE-5i + other IV prostacyclin analogues</td>
<td>—</td>
</tr>
</tbody>
</table>

Sequential Combination Therapy
Medications for PAH: ESC/ERS Guidelines

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class - Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WHO FC II</td>
</tr>
<tr>
<td>Macitentan added to sildenafil</td>
<td>I</td>
</tr>
<tr>
<td>Riociguat added to bosentan</td>
<td>I</td>
</tr>
<tr>
<td>Selexipag added to ERA and/or PDE-5i</td>
<td>I</td>
</tr>
<tr>
<td>Sildenafil added to epoprostenol</td>
<td>—</td>
</tr>
<tr>
<td>Treprostinil inhaled added to sildenafil or bosentan</td>
<td>Ia</td>
</tr>
<tr>
<td>Iloprost inhaled added to bosentan</td>
<td>Ia</td>
</tr>
<tr>
<td>Tadalafil added to bosentan</td>
<td>Ila</td>
</tr>
<tr>
<td>Ambrisentan added to sildenafil</td>
<td>Ila</td>
</tr>
<tr>
<td>Bosentan added to epoprostenol</td>
<td>—</td>
</tr>
<tr>
<td>Bosentan added to sildenafil</td>
<td>Ila</td>
</tr>
<tr>
<td>Sildenafil added to bosentan</td>
<td>Ila</td>
</tr>
<tr>
<td>Other double combinations</td>
<td>Ila</td>
</tr>
<tr>
<td>Other triple combinations</td>
<td>Ila</td>
</tr>
<tr>
<td>Riociguat added to sildenafil or other PDE-5i</td>
<td>III</td>
</tr>
</tbody>
</table>

PAH Treatment Algorithm: ESC/ERS Guidelines

- Treatment-Naive Patient
 - CCB Therapy
 - Acute Vasoreactivity Test (IPAH/HPAH/DPAH only)
 - PAH Confirmed by Expert Center
 - Vasoreactive
 - Monotherapy
 - Oral Combo
 - Low or Intermediate Risk (WHO FC II-III)
 - Inadequate Clinical Response
 - Double or Triple Sequential Combination
 - Inadequate Clinical Response
 - Consider Lung Transplantation
 - Non-vasoreactive
 - High Risk (WHO FC IV)
 - Combo incl. IV PCA

- Patient Already on Treatment

CCB, calcium channel blocker; PCA, patient-controlled analgesia.
The AMBITION Trial: Evidence for Combination Therapy

Macitentan: SERAPHIN Trial
Novel Agent for PAH

- Change in Mean 6MWD by 6 Months
 - 10 mg: HR 0.55, 97.5% CI 0.39-0.76, P<.001
 - 3 mg: HR 0.70, 97.5% CI 0.52-0.96, P=.01

- Adverse Events
 - Worsening PAH: 30%, 22%, 35%
 - Upper resp. tract infect.: 20%, 15%, 13%
 - Peripheral edema: 16%, 18%, 18%
 - Nasopharyngitis: 15%, 14%, 10%
 - RV failure: 15%, 13%, 23%
 - Headache: 13%, 14%, 9%

- Patients without an Event (%)

Riociguat: PATENT Trials
Novel Agent for PAH

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>1.5 mg max (n=63)</th>
<th>2.5 mg max (n=254)</th>
<th>Placebo (n=126)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>32%</td>
<td>27%</td>
<td>20%</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>13%</td>
<td>19%</td>
<td>8%</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>22%</td>
<td>17%</td>
<td>11%</td>
</tr>
<tr>
<td>Nausea</td>
<td>16%</td>
<td>16%</td>
<td>13%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>24%</td>
<td>16%</td>
<td>12%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>10%</td>
<td>14%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Selexipag: GRIPHON Trial
Novel Agent for PAH

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Selexipag (n=575)</th>
<th>Placebo (n=577)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>65%</td>
<td>33%</td>
<td><.001</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>42%</td>
<td>19%</td>
<td><.001</td>
</tr>
<tr>
<td>Nausea</td>
<td>34%</td>
<td>19%</td>
<td><.001</td>
</tr>
<tr>
<td>Pain in jaw</td>
<td>26%</td>
<td>6%</td>
<td><.001</td>
</tr>
<tr>
<td>Worsening of PAH</td>
<td>22%</td>
<td>36%</td>
<td><.001</td>
</tr>
<tr>
<td>Vomiting</td>
<td>18%</td>
<td>9%</td>
<td><.001</td>
</tr>
</tbody>
</table>

The TRITON Trial
Evidence for Combination Therapy

- The Efficacy and Safety of Initial Triple Versus Initial Dual Oral Combination Therapy in Patients With Newly Diagnosed Pulmonary Arterial Hypertension (TRITON)
Therapy for CTEPH
CTEPH Treatment Algorithm: ESC/ERS Guidelines

- Diagnosis Confirmed by CTEPH Expert Center
- Lifelong Anticoagulation
- Operability Assessment by a multidisciplinary CTEPH team
- Technically Operable
- Acceptable Risk/Benefit Ratio
- PEA
- Non-acceptable Risk/Benefit Ratio
- Persistent Symptomatic PH
- Targeted Medical Therapy
- Persistent Severe Symptomatic PH
- Consider BPA in Expert Center
- Consider Lung Transplantation

PEA Procedure (cont’d)

This shows how the scar tissue is removed from the artery wall (seen from the side).

© UHN Patient Education

Riociguat: CHEST-1 & CHEST-2 Trials
CTEPH Targeted Medical Therapy: ESC/ERS Guidelines

Mean Change in 6MWD

- Former Riociguat
- Former Placebo

Change in WHO FC

- Improved
- Stabilized
- Worsened

Importance of a Team-based, Patient-centered Approach to Care
Multidisciplinary Team

- Cardiologist
- Pulmonologist
- Clinical Nurse Specialist
- Radiologist
- Psychologist
- Social Worker
- Gastroenterologist
- Infectious Disease Specialist
- Rheumatologist

Referral center should have direct links and quick referral patterns to additional services

- CTD
- Family Planning
- PEA
- Transplant Center
- Adult CHD services
Palliative Care: Patient Perspectives from a Cross-sectional Survey

Palliative Care: Physician Perspectives from a Cross-sectional Survey

Reasons for Referral to PC

<table>
<thead>
<tr>
<th>Reason</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of life/active dying</td>
<td>59%</td>
</tr>
<tr>
<td>Hospice referral</td>
<td>46%</td>
</tr>
<tr>
<td>Dyspnea management</td>
<td>39%</td>
</tr>
<tr>
<td>Impaired quality of life</td>
<td>39%</td>
</tr>
<tr>
<td>Goals-of-care discussion</td>
<td>32%</td>
</tr>
<tr>
<td>Pain management</td>
<td>25%</td>
</tr>
<tr>
<td>Other symptoms</td>
<td>14%</td>
</tr>
</tbody>
</table>

Perceived Barriers to Referral

<table>
<thead>
<tr>
<th>Barrier</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient/Family not agreeable to consultation</td>
<td>51%</td>
</tr>
<tr>
<td>Patient will view as “giving up hope”</td>
<td>43%</td>
</tr>
<tr>
<td>Physician believes PC unnecessary</td>
<td>36%</td>
</tr>
<tr>
<td>Believes patients not eligible</td>
<td>28%</td>
</tr>
<tr>
<td>Gets in the way of PAH treatment</td>
<td>20%</td>
</tr>
<tr>
<td>“Palliative” has negative connotation</td>
<td>17%</td>
</tr>
<tr>
<td>Same as hospice and patient not ready</td>
<td>6%</td>
</tr>
</tbody>
</table>

PC, palliative care.
Addressing Adherence Issues

- Patient-centered care
- Self-efficacy is KEY
- Awareness of limitations in older patients
- Help with low health literacy
 - Simple language
 - Larger font sizes
 - Pictures/diagrams
Nurse-specific Training

- IV prostacyclin therapy
 - Medication orders
 - IV access
 - Initiation of therapy
 - Safety measures
 - Catheter priming for concentration changes or line changes
 - Pump management and maintenance
 - Care of central line and patient education

- Transitioning from one IV prostacyclin to another
Resources for Patients & Caregivers

- PHA association: www.phassociation.org
 - Resources for patients
 - Resources for clinicians
 - Clinical research
Case Evaluation
Case Evaluation: Patient Description

- 58-year-old female with scleroderma (>10 years)
- Evidence of progressive dyspnea over the preceding 6 months
- NYHA FC III
- Comorbidities
 - Smoker (>40 years)
 - Cough
 - Raynaud’s syndrome (>9 years)
- Cool extremities with evidence of peripheral edema
- Pansystolic murmur indicating tricuspid regurgitation

NYHA FC: New York Heart Association functional class.
The CXR

Peripheral Hypovascularity

Prominent Central Pulmonary Artery

Right Descending Pulmonary Artery

RV Enlargement

CXR, chest X-ray.
Irrespective of the pressure measurement, this heart is highly suspicious for PAH, based on structural changes.

LA=left atrium/atrial
LV=left ventricle/ventricular
RA=right atrium/atrial
RV=right ventricle/ventricular

Pericardial effusion
Our Patient’s Initial Test Results

- DLCO 54%
- FVC%/DLC%=1.7
- 6MWD=268 meters
- CXR reveals enlarged cardiac silhouette
- Right Heart Catheterization
 - mRAP: 12 mmHg
 - mPAP: 45 mmHg
 - CI: 2.3 L/min/m²
 - PVR: 12 Wood units

How would you treat this patient?
Goals of Treatment in 2018

- NYHA Functional Class is an important predictor of survival
- If PAH therapy is effective, improvement in NYHA FC from FC III/IV to FC II is consistent with improved PAH prognosis

<table>
<thead>
<tr>
<th>Variables Used in Clinical Practice to Determine Responses to Therapy and Prognosis in PAH Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional class</td>
</tr>
<tr>
<td>Echocardiography</td>
</tr>
<tr>
<td>Hemodynamics</td>
</tr>
<tr>
<td>6MWD</td>
</tr>
<tr>
<td>Cardiopulmonary exercise testing</td>
</tr>
<tr>
<td>B-type natriuretic peptide levels</td>
</tr>
</tbody>
</table>

EqCO₂, ventilatory equivalent for carbon dioxide.
What is the initial therapy for a high risk patient with Group I PAH (Functional Class II-III)?

A. Oral monotherapy
B. Oral dual combination therapy
C. IV infusion prostacyclin therapy
PAH and CTEPH are chronic, life-threatening conditions
- Require early recognition and accurate diagnosis

Diagnosis
- V/Q scan important to distinguish between PAH and CTEPH

Complex therapeutic management
- Guideline recommendations
- Novel therapies

Multidisciplinary, patient-centered approach is critical
- PH referral centers
- Cardiologists and pulmonologists
- Adherence issues
- High level of nursing competency
Clinical Pearls

- **Diagnosis**
 - Chest X-ray is inferior to ECG in diagnosing PAH
 - Structural changes may indicate PAH irrespective of pressure

- **Treatment**
 - PAH: Combination therapy is currently the standard of care
 - Targeting multiple pathways improves therapeutic response
 - Goal: Improvement and normalization to make patients LOW RISK
 - CTEPH: Patients ineligible for PEA should receive riociguat

- **Patient resources are important to ensuring outcomes!**
Questions and Answers
Thank You!