HOSPITAL MEDICINE

Pulmonary Hypertension: A Patient-Centered, Team-based **Approach to Optimizing Outcomes in PAH and CTĚPH**

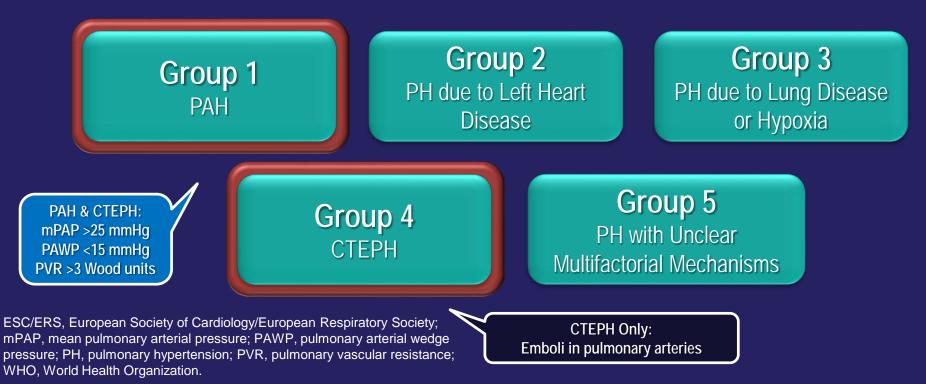
This CME activity is provided by Integrity Continuing Education. This CEU/CNE activity is co-provided by Postgraduate Institute for Medicine and Integrity Continuing Education.

Faculty

Ioana R. Preston, MD, FACCP Associate Professor of Medicine Tufts University School of Medicine Director, Pulmonary Hypertension Center Tufts Medical Center Boston, Massachusetts

Faculty Disclosures

- Consultant: Acceleron, Actelion, Gilead, Liquidia, Pfizer, United Therapeutics
- Grants to TMC: Acceleron, Actelion, Bayer, Complexa, Gilead, Liquidia, United Therapeutics


Learning Objectives

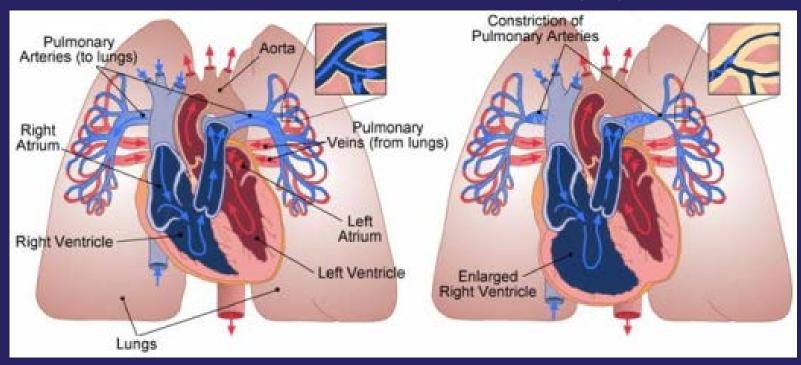
- Identify strategies to screen and improve early recognition of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH)
- Apply guideline recommendations to the accurate diagnosis of PAH and CTEPH
- Develop a guideline-directed, evidence-based management plan for PAH and CTEPH that includes consideration of novel therapies and current clinical trial data
- Establish a multidisciplinary, patient-centered approach to care for patients with PAH or CTEPH

Introduction

WHO Classification Groups

Galiè N, et al. Eur Heart J. 2016;37(1):67-119.

PAH Group I

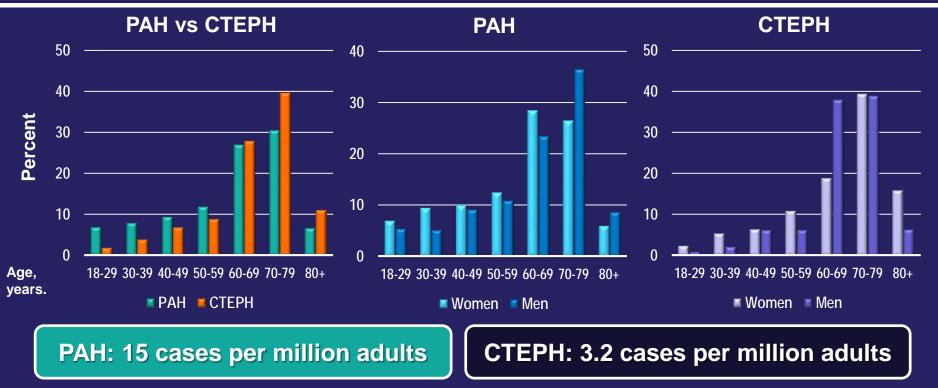

- Idiopathic (IPAH)
- Hereditary (HPAH)
- Associated with (APAH)
 - Collagen vascular disease
 - Congenital systemic-topulmonary shunts
 - Portal hypertension
 - HIV infection
 - Drugs/toxins

- Persistent pulmonary hypertension of the newborn
- Associated with venous or capillary involvement
 - Pulmonary veno-occlusive disease (PVOD)
 - Pulmonary capillary hemangiomatosis (PCH)

PH → Right-sided Heart Failure

Normal Heart

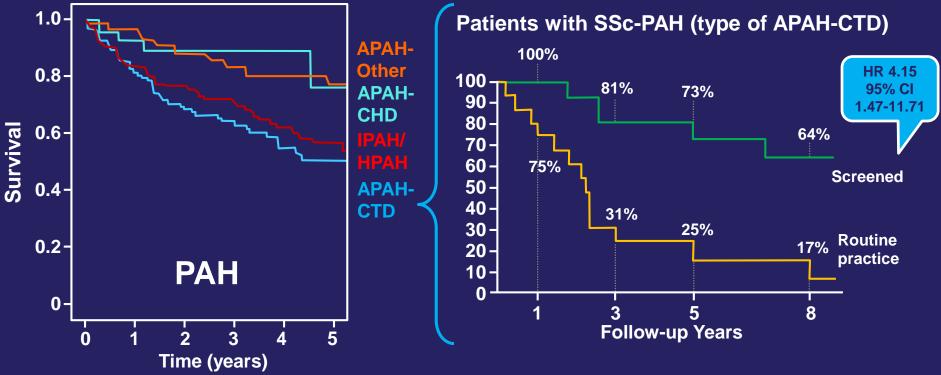
Pulmonary Hypertension



Nationwide Children's Hospital. Pulmonary Hypertension. Available at: https://www.nationwidechildrens.org/conditions/pulmonary-hypertension.

Early Recognition of PAH and CTEPH

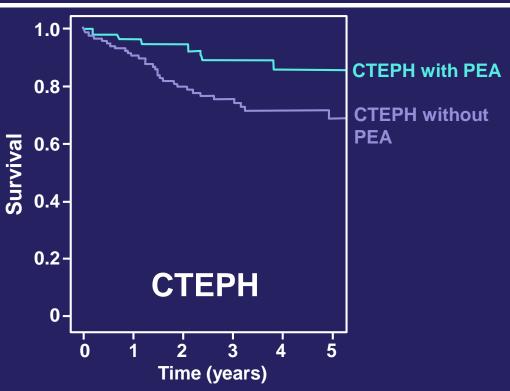
Diagnosed Patients: Age Distribution & Prevalence


Rådegran G, et al. *Scand Cardiovasc J*. 2016;50(4):243-250. Galiè N, et al. *Eur Heart J*. 2016;37(1):67-119.

WHO Functional Classes: PAH & CTEPH

Class	Description
I	No limitation of usual physical activity ; ordinary physical activity does not cause increased dyspnea, fatigue, chest pain, or presyncope.
Ш	Mild limitation of physical activity . There is no discomfort at rest, but normal physical activity causes increased dyspnea, fatigue, chest pain, or presyncope.
ш	Marked limitation of physical activity . There is no discomfort at rest, but less than normal physical activity causes increased dyspnea, fatigue, chest pain, or presyncope.
IV	Unable to perform any physical activity at rest and may have signs of right ventricular (RV) failure. Dyspnea and/or fatigue may be present at rest, and symptoms are increased by almost any physical activity.

Moote R, et al. In: DiPiro JT, et al, eds. *Pharmacotherapy: A Pathophysiologic Approach*, 10th ed. New York, NY: McGraw-Hill Education; 2017.


Importance of Early Recognition

CHD, congenital heart disease; CTD, connective tissue disease; SSc, systemic sclerosis. Rådegran G, et al. *Scand Cardiovasc J.* 2016;50(4):243-250. Humbert M, Gerry Coghlan J, Khanna D. *Eur Respir Rev.* 2012;21(126):306-312.

Importance of Early Recognition (cont'd)

- CTEPH is only PH with potential cure
- Pulmonary endarterectomy (PEA)
 - 20%-40% are inoperable
 - 80%-90% cured with PEA
 - Procedure mortality
 - In-hospital mortality: 4.7%
 - 1-year postoperative mortality: 7%

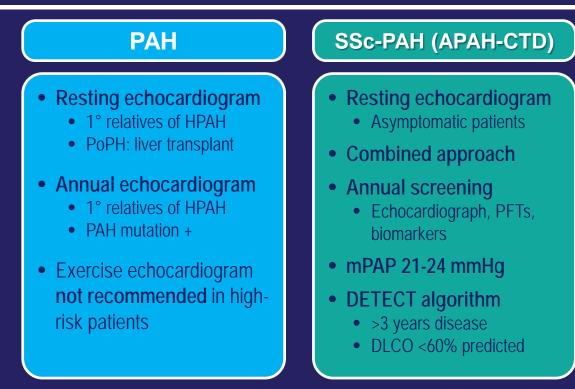
Rådegran G, et al. *Scand Cardiovasc J*. 2016;50(4):243-250. Mayer E. *Eur Respir Rev.* 2010;19 (115):64-7.

PAH Screening: ESC/ERS Recommendations

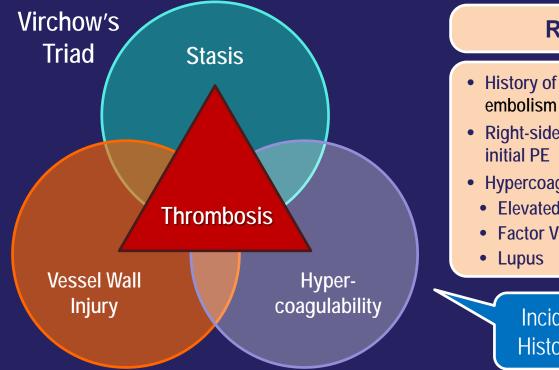
Symptoms of PH

Initial: Nonspecific, RV dysfunction

- Dyspnea
- Syncope
- Fatigue
- Dry cough
- Weakness


Angina

ess • Exerciseinduced N/V


Later: Progressive RV failure

DLCO, diffusing lung capacity for carbon monoxide; PFT, pulmonary function test; PoPH, portopulmonary hypertension; RV, right ventricular.

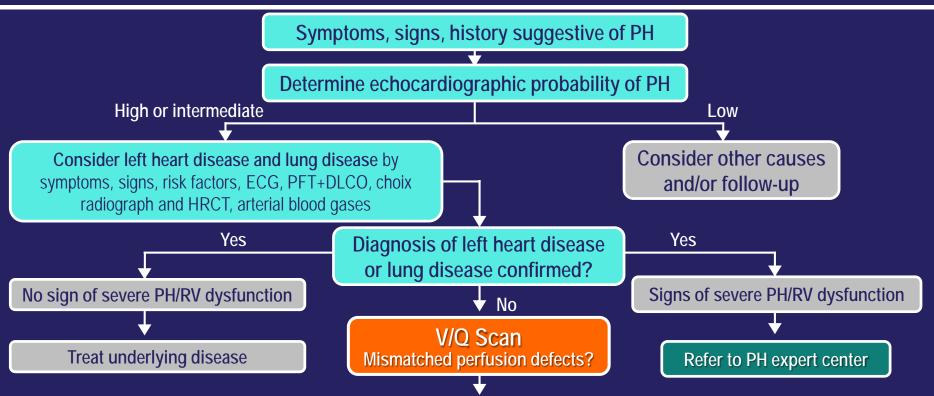
Galiè N, et al. Eur Heart J. 2016;37(1):67-119.

Screening for CTEPH

Risk Factors for CTEPH

- History of pulmonary embolism (PE)
- Right-sided heart strain at
- Hypercoagulable states
- Elevated factor VIII
- Factor V Leiden mutation

- Splenectomy
- Hypothyroidism
- Chronic inflammation
- History of malignancy
- Ventriculoarterial shunts or pacemakers
- Unexplained PH

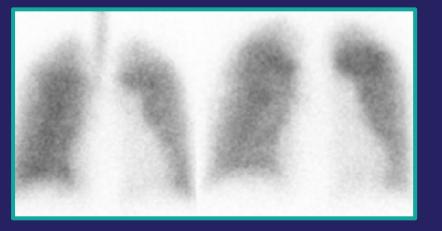

Incidence after acute PE: 0.5% to 9% History of acute PE in diagnosed: 75%

O'Connell C, et al. Presse Med. 2015;44(12):e409-e416. Pepke-Zaba J, et al. Circulation. 2011;124:1973-1981.

Diagnosis of PAH and CTEPH

Diagnostic Algorithm: ESC/ERS Guidelines

Galiè N, et al. Eur Heart J. 2016;37(1):67-119.


V/Q Scan

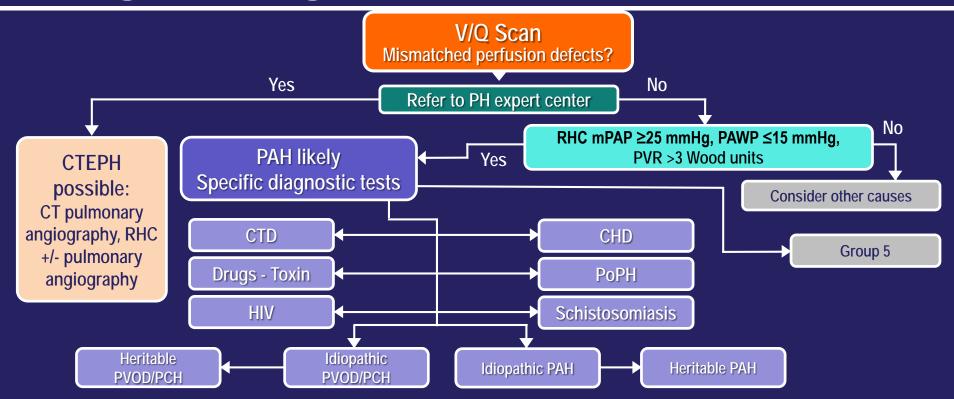
Ventilation

Perfusion

Ventilation

Perfusion

Normal or Mottled Pattern


PAH

At least one segmental perfusion defect inconsistent with ventilation scan findings

Tanabe N, et al. Respir Investig. 2013;51(3):134-146.

Diagnostic Algorithm: ESC/ERS Guidelines

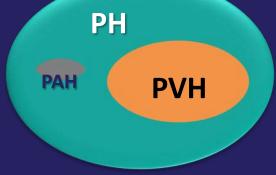
PVOD/PCH, pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis; RHC, right heart catheterization. Galiè N, et al. *Eur Heart J.* 2016;37(1):67-119.

PAH: Hemodynamic Definition (definitive diagnosis)

Mean pulmonary artery pressure (mPAP) of ≥25 mmHg at rest

<u>AND</u>

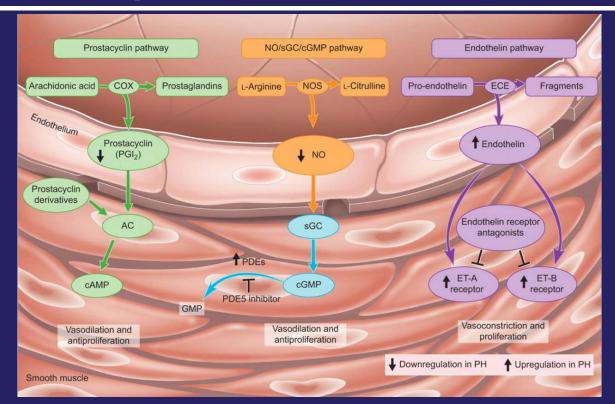
Mean pulmonary capillary wedge pressure (PCWP) of \leq 15 mmHg


(No evidence of left-heart disease) PVR >3 Wood units

Most PH cases are <u>not</u> in WHO group I!!!

• <u>PAH</u>

- •↑PVR
- •↑Transpulmonary pressure gradient (TPG)
- •Normal left-sided filling pressures
- Pulmonary venous hypertension (PVH) characterized by
 - •↑PCWP, usually normal TPG, and PVR



Therapy for PAH

Targeting Multiple Pathologic Pathways Improves Response

Humbert M. Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: pathophysiology. European Respiratory Review 2010;19: 59-63.

Goals of Treatment in 2018: Improvement to a Goal

- However....improvement and normalization of ALL clinical parameters to make patients LOW RISK is the goal in PAH treatment
- Preservation or prevention of worsening is no longer the goal

Determinants of Prognosis	Low Risk (<5%)	Intermediate Risk (5-10%)	High Risk (>10%)
(estimated 1-year mortality)	AT GOAL!!!	NOT AT GOAL	NOT AT GOAL
Clinical signs of right heart failure	Absent	Absent	Present
Progression of symptoms	Νο	Slow	Rapid
Syncope	Νο	Occasional syncope	Repeated syncope
WHO Functional Class	I, II	III	IV
6MWD	>440 m	165-440 m	<165 m
Cardiopulmonary exercise testing	Peak VO ₂ >15 mL/min/kg (>65% predicted) VE/VCO ₂ slope <36	Peak VO ₂ 11-15 mL/min/kg (35%-65% predicted) VE/VCO ₂ slope 36-44.9	Peak VO ₂ <11 mL/min/kg (<35% predicted) VE/VCO ₂ slope ≥45
NT-proBNP levels	BNP <50 ng/L NT-pro BNP <300 ng/L	BNP 50-300 ng/L NT-pro BNP 300-1400 ng/L	BNP >300 ng/L NT-pro BNP >1400 ng/L
Imaging (ECHO or CMR)	RA area <18 cm ² No pericardial effusion	RA area 18-26 cm ² No/minimal pericardial effusion	RA area >26 cm ² Pericardial effusion
Hemodynamics	RAP <8 mmHg Cl ≥2.5 L/min/m² SvO ₂ > 65%	RAP 8-14 mmHg Cl 2.0-2.4 L/min/m ² SvO ₂ 60%-65%	RAP >14 mmHg Cl <2.0 L/min/m ² SvO ₂ <60%

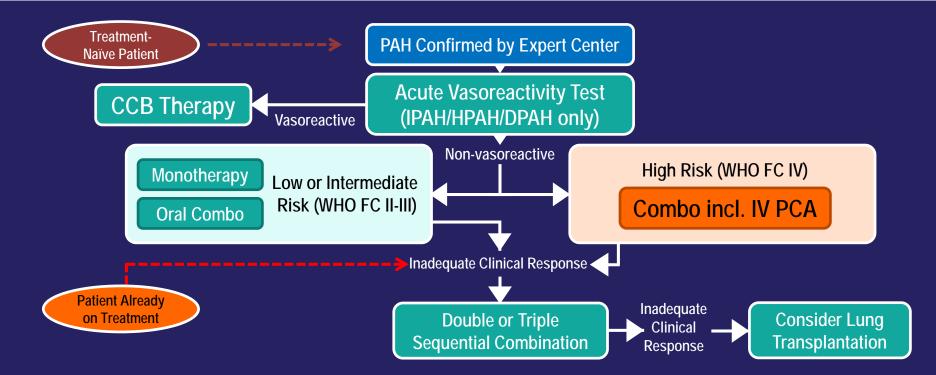
6MWD, 6-minute walk distance: Cl. pulmonary clearance: CMR. cardiovascular magnetic resonance; NT-pro BNP, N-terminal pro-B-type brain natriuretic peptide; RA, right atrial; RAP, right atrial pressure: SVO₂, mixed venous oxygen saturation VE/VCO₂, ventilation:carbon dioxide output; VO2, peak oxygen uptake.

Galiè N, et al. Eur Heart J. 2016;37(1):67-119.

Drug Monotherapy Medications for PAH: ESC/ERS Guidelines

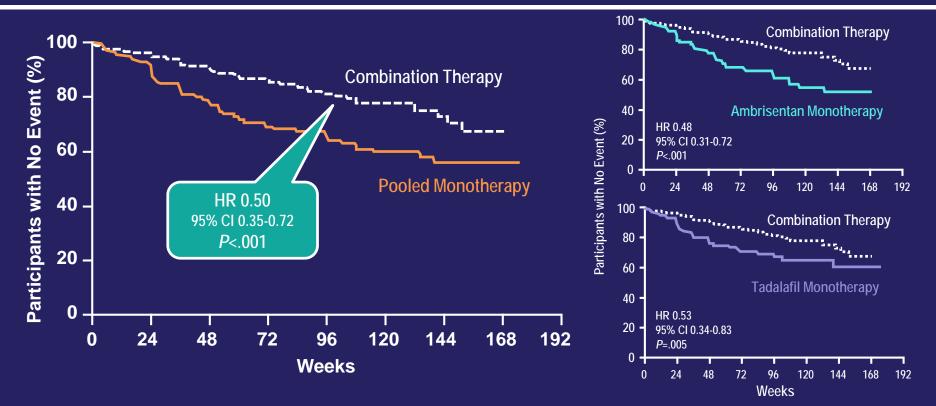
Recommendations			Class - Level						
Therapy				WHO FC II		WHO FC III		WHO FC IV	
Calcium channel blockers			I	С	I	С	_	—	
	Ambrisentan		I	Α		Α	llb	С	
Endothelin receptor antagonists (ERA)	Bosentan			А		Α	llb	С	
	Macitentan — NOVEL AGENT		I	В		В	llb	С	
Dheenhediaataraaa tura Einhihitara	Sildenafil			Α	I	Α	llb	С	
Phosphodiesterase type-5 inhibitors (PDE-5i)	Tadalafil		I	В	I	В	llb	С	
(FDE-31)	Vardenafil*		llb	В	llb	В	llb	С	
Guanylate cyclase stimulators	Riociguat — NOVEL AGENT		I	В	I	В	llb	С	
	Epoprostenol	Intravenous (IV)	—	-		Α	I	А	
	lloprost	Inhaled	—			В	llb	С	
		IV*	_	-	lla	С	llb	С	
Drestevialin analogues	Treprostinil	Subcutaneous (SC)	_	_	I	В	llb	С	
Prostacyclin analogues		Inhaled	_	-	I	В	llb	С	
		IV	_	-	lla	С	llb	С	
		Oral	_	_	llb	В	—	—	
	Beraprost*		_		llb	В		_	
Prostacyclin receptor (IP) agonists	Selexipag (oral) — NOVEL AGENT			В	I	В	_	_	
Included in recommendations but not yet approved for PAH indication									

FC, functional class. Galiè N, et al. *Eur Heart J*. 2016;37(1):67-119.

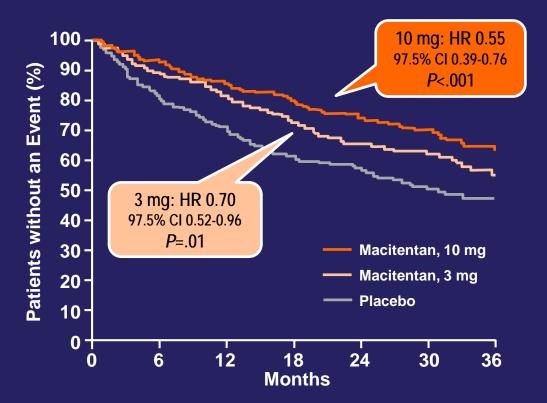

Initial Combination Therapy Medications for PAH: ESC/ERS Guidelines

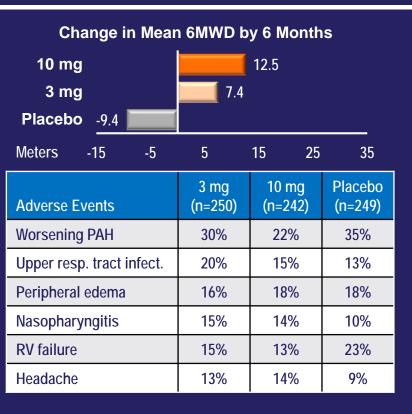
Recommendations	Class - Level					
Therapy	WHO FC II		WHO FC III		WHO FC IV	
Ambrisentan + tadalafil	I	В	Ι	В	llb	С
Other ERA + PDE-5i	lla	С	lla	С	llb	С
Bosentan + sildenafil + IV epoprostenol		_	lla	С	lla	С
Bosentan + IV epoprostenol	_	_	lla	С	lla	С
Other ERA or PDE-5i + SC treprostinil	_	_	llb	С	llb	С
Other ERA or PDE-5i + other IV prostacyclin analogues	_	_	llb	С	llb	С

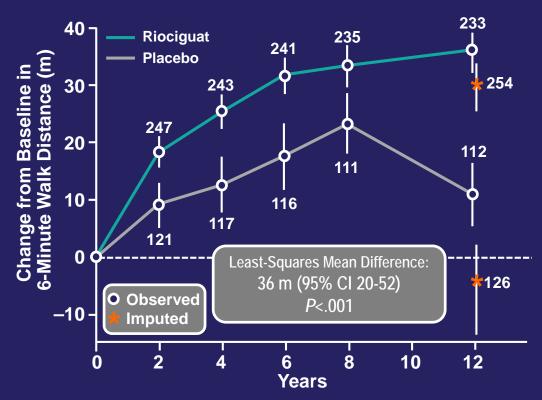
Sequential Combination Therapy Medications for PAH: ESC/ERS Guidelines


Recommendations	Class - Level						
Therapy	WHO FC II W		WHO	WHO FC III		WHO FC IV	
Macitentan added to sildenafil	I	В	I	В	lla	С	
Riociguat added to bosentan	I	В	I	В	lla	С	
Selexipag added to ERA and/or PDE-5i	I	В	I	В	lla	С	
Sildenafil added to epoprostenol	—	_	I	В	lla	В	
Treprostinil inhaled added to sildenafil or bosentan	lla	В	lla	В	lla	С	
lloprost inhaled added to bosentan	llb	В	llb	В	llb	С	
Tadalafil added to bosentan	lla	С	lla	С	lla	С	
Ambrisentan added to sildenafil	llb	С	llb	С	llb	С	
Bosentan added to epoprostenol	—	_	llb	С	llb	С	
Bosentan added to sildenafil	llb	С	llb	С	llb	С	
Sildenafil added to bosentan	llb	С	llb	С	llb	С	
Other double combinations	llb	С	llb	С	llb	С	
Other triple combinations	llb	С	llb	С	llb	С	
Riociguat added to sildenafil or other PDE-5i	III	В	III	В	III	В	

PAH Treatment Algorithm: ESC/ERS Guidelines

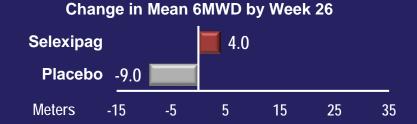

CCB, calcium channel blocker; PCA, patient-controlled analgesia. Galiè N, et al. *Eur Heart J*. 2016;37(1):67-119.


The AMBITION Trial: Evidence for Combination Therapy


Galiè N, et al. N Engl J Med. 2015;373(9):834-844.

Macitentan: SERAPHIN Trial Novel Agent for PAH

Riociguat: PATENT Trials Novel Agent for PAH

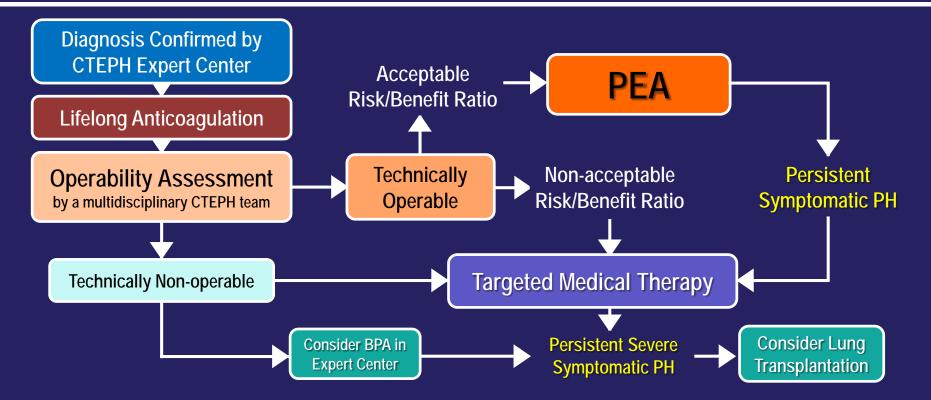


Change in Mean 6MWD by Week 12 2.5 mg Max 30.0 Placebo -6.0 Meters -15 -5 5 15 25 35 2.5 mg 1.5 mg Placebo max max Adverse Events (n=63) (n=254) (n=126) Headache 32% 27% 20% Dyspepsia 13% 19% 8% Peripheral edema 22% 17% 11% Nausea 16% 16% 13% Dizziness 24% 16% 12% Diarrhea 10% 14% 10%

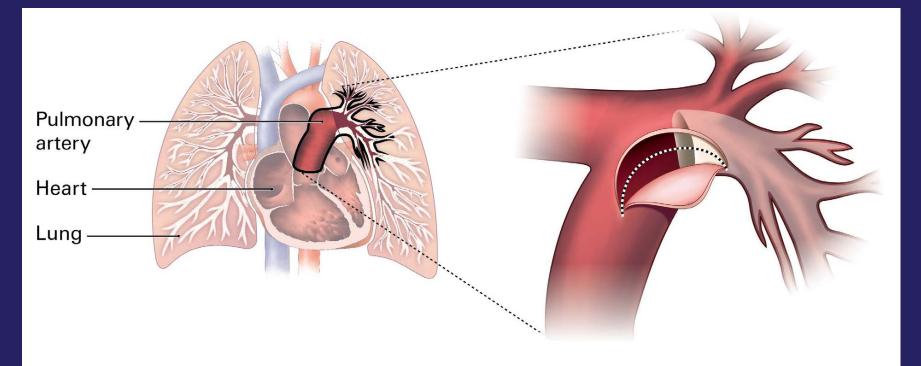
Ghofrani H-A, et al. N Engl J Med. 2013;369(4):330-340.

Selexipag: GRIPHON Trial Novel Agent for PAH

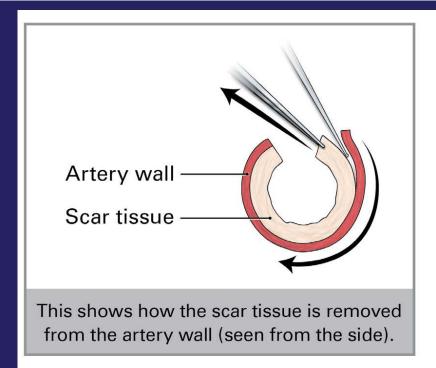
Adverse Events	Selexipag (n=575)	Placebo (n=577)	<i>P</i> -value
Headache	65%	33%	<i>P</i> <.001
Diarrhea	42%	19%	<i>P</i> <.001
Nausea	34%	19%	<i>P</i> <.001
Pain in jaw	26%	6%	<i>P</i> <.001
Worsening of PAH	22%	36%	<i>P</i> <.001
Vomiting	18%	9%	<i>P</i> <.001

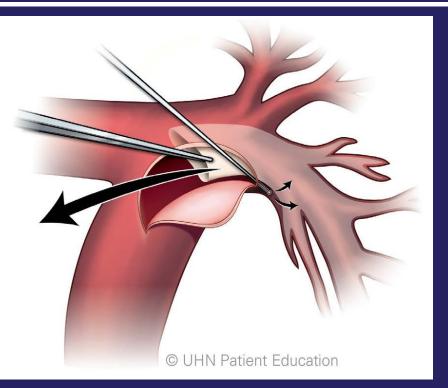

The TRITON Trial Evidence for Combination Therapy

 The Efficacy and Safety of Initial Triple Versus Initial Dual Oral Combination Therapy in Patients With Newly Diagnosed Pulmonary Arterial Hypertension (TRITON)


Therapy for CTEPH

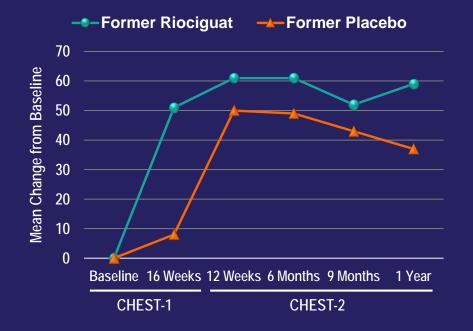
CTEPH Treatment Algorithm: ESC/ERS Guidelines

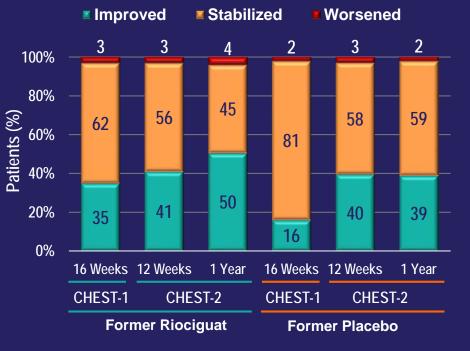



PEA Procedure

Pulmonary Hypertension Association of Canada. CTEPH – During the Surgery. Available at: http://www.phacanada.ca/cteph/treatment/; http://www.phacanada.ca/index.php/download_file/view_inline/2919/.

PEA Procedure (cont'd)




Pulmonary Hypertension Association of Canada. CTEPH – During the Surgery. Available at: http://www.phacanada.ca/cteph/treatment/; http://www.phacanada.ca/index.php/download_file/view_inline/2919/.

Riociguat: CHEST-1 & CHEST-2 Trials CTEPH Targeted Medical Therapy: ESC/ERS Guidelines

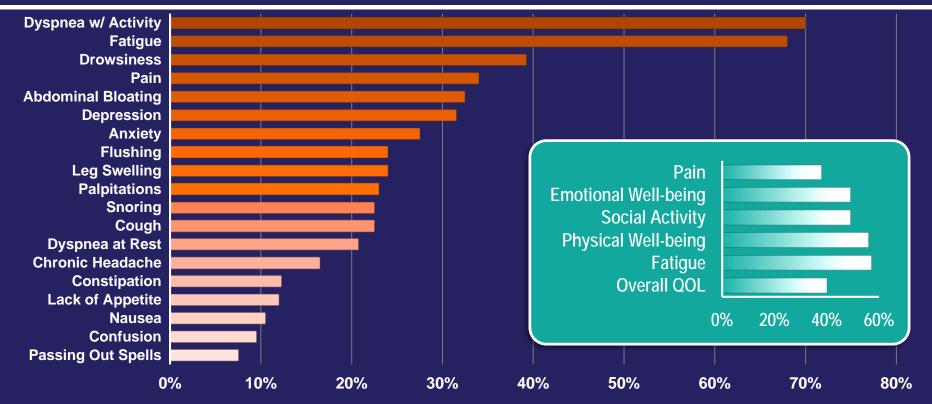
Mean Change in 6MWD

Change in WHO FC

Importance of a Team-based, Patient-centered Approach to Care

Multidisciplinary Team

- Cardiologist
- Pulmonologist
- Clinical Nurse Specialist
- Radiologist
- Psychologist

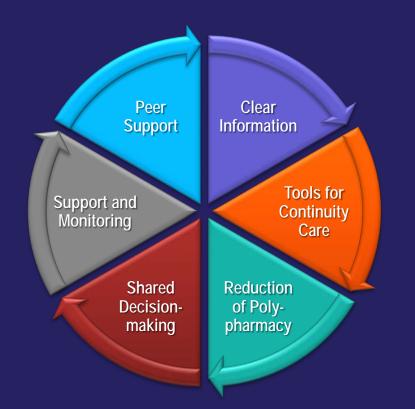

- Social Worker
- Gastroenterologist
- Infectious Disease Specialist
- Rheumatologist

Referral center should have direct links and quick referral patterns to additional services

- CTD
- Family
 - Planning
- PEA

- Transplant Center
- Adult CHD services

Palliative Care: Patient Perspectives from a Cross-sectional Survey



Swetz KM, et al. J Heart Lung Transplant. 2012;31(10):1102-1108.

Palliative Care: Physician Perspectives from a Cross-sectional Survey

Reasons for Referral to PC	%	Perceived Barriers to Referral	%
End of life/active dying	59%	Patient/Family not agreeable to consultation	51%
Hospice referral	46%	Patient will view as "giving up hope"	43%
Dyspnea management	39%	Physician believes PC unnecessary	36%
Impaired quality of life	39%	Believes patients not eligible	28%
Goals-of-care discussion	32%	Gets in the way of PAH treatment	20%
Pain management	25%	"Palliative" has negative connotation	17%
Other symptoms	14%	Same as hospice and patient not ready	6%

Addressing Adherence Issues

- Patient-centered care
- Self-efficacy is KEY
- Awareness of limitations in older patients
- Help with low health literacy
 - Simple language
 - Larger font sizes
 - Pictures/diagrams

Nurse-specific Training

- IV prostacyclin therapy
 - Medication orders
 - IV access
 - Initiation of therapy
 - Safety measures
 - Catheter priming for concentration changes or line changes
 - Pump management and maintenance
 - Care of central line and patient education
- Transitioning from one IV prostacyclin to another

Resources for Patients & Caregivers

- PHA association: www.phassociation.org
 - Resources for patients
 - Resources for clinicians
 - Clinical research

Case Evaluation

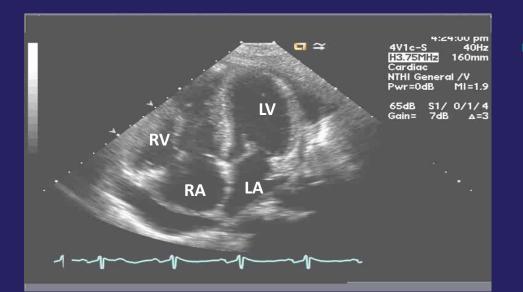
Case Evaluation: Patient Description

- 58-year-old female with scleroderma (>10 years)
- Evidence of progressive dyspnea over the preceding 6 months
- NYHA FC III
- Comorbidities
 - Smoker (>40 years)
 - Cough
 - Raynaud's syndrome (>9 years)
- Cool extremities with evidence of peripheral edema
- Pansystolic murmur indicating tricuspid regurgitation

The CXR

Peripheral

Hypovascularity



CXR, chest X-ray. McLaughlin VV, et al. *JACC.* 2009;53:1573-1619.

Prominent Central Pulmonary Artery

RV Enlargement

Echocardiographic Characteristics of Our Patient (Apical View)

LA=left atrium/atrial LV=left ventricle/ventricular RA=right atrium/atrial RV=right ventricle/ventricular Irrespective of the pressure measurement, this heart is highly suspicious for PAH, based on structural changes

Pericardial effusion

Our Patient's Initial Test Results

- DLCO 54%
- FVC%/DLC%=1.7
- 6MWD=268 meters
- CXR reveals enlarged cardiac silhouette
- Right Heart Catheterization
 - mRAP: 12 mmHg
 - mPAP: 45 mmHg
 - CI: 2.3 L/min/m²
 - PVR: 12 Wood units

How would you treat this patient?

Goals of Treatment in 2018

- NYHA Functional Class is an important predictor of survival
- If PAH therapy is effective, improvement in NYHA FC from FC III/IV to FC II is consistent with improved PAH prognosis

Variables Used in Clinical Practice to Determine Responses to Therapy and Prognosis in PAH Patients

Functional class	l or ll
Echocardiography	Normal/near-normal RV size and function
Hemodynamics	Normalization of RV function (RAP <8 mmHg and CI >2.5-3.0 L/min ²)
6MWD	>380 to 440 m (or more in younger patients)
Cardiopulmonary exercise testing	Peak VO ₂ >15 mL/min/kg and EqCO ₂ <45 L/min/L/min
B-type natriuretic peptide levels	Normal

EqCO₂, ventilatory equivalent for carbon dioxide. McLaughlin VV, et al. *JACC*. 2013;62(25 suppl D):D73-D81. What is the initial therapy for a high risk patient with Group I PAH (Functional Class II-III)?

- A. Oral monotherapy
- **B.** Oral dual combination therapy
- C. IV infusion prostacyclin therapy

Summary

- PAH and CTEPH are chronic, life-threatening conditions
 - Require early recognition and accurate diagnosis
- Diagnosis
 - V/Q scan important to distinguish between PAH and CTEPH
- Complex therapeutic management
 - Guideline recommendations
 - Novel therapies
- Multidisciplinary, patient-centered approach is critical
 - PH referral centers
 - Cardiologists and pulmonologists
 - Adherence issues
 - High level of nursing competency

Clinical Pearls

Diagnosis

- Chest X-ray is inferior to ECG in diagnosing PAH
- Structural changes may indicate PAH irrespective of pressure
- Treatment
 - PAH: Combination therapy is currently the standard of care
 - Targeting multiple pathways improves therapeutic response
 - Goal: Improvement and normalization to make patients LOW RISK
 - CTEPH: Patients ineligible for PEA should receive riociguat
- Patient resources are important to ensuring outcomes!

Questions and Answers

Thank You!

